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ABSTRACT 

 

Despite its importance, is evapotranspiration poorly studied in páramo ecosystems. This 

study assesses the performance of 30 models, including 21 empirical models, (radiation-, 

temperature-, combination- and mass transfer-based), 8 artificial neural network models 

(ANNs), and 1 multivariate adaptive regression spline (MARS) model for the estimation of 

daily reference evapotranspiration (ETo) in comparison to the standard Penman-Monteith 

equation (FAO 56 P-M). An additional objective was to define for the study region the best 

alternative to the standard method. Available and limited data of two weather stations, 

respectively Toreadora (2013-2016 period) and Zhurucay (2014 period), both located in the 
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páramo ecosystem of the Azuay province, in Southern Ecuador, were used. Simple statistical 

metrics (MBE, MAE and RMSE) were applied to evaluate the performance of the models. A 

random forests analysis was carried out to define the relevance of the weather variables in 

the evapotranspiration process. The random forest results were used for assembling the 

ANNs using different combinations of weather variables. This approach permitted to define 

the ANN with the smallest number of inputs that best estimate ETo. The MARS model 

enabled to derive an empirical equation, called REMPE, which uses solar radiation and 

minimum relative humidity as variable inputs. From the group of empirical equations, the 

combination-based equations have the best performance followed by the radiation-, 

temperature- and mass transfer-based equations. A calibration method was applied to 

improve the performance of the tested models. Results showed that the improved ANNs are 

the most accurate for estimating daily ETo, while the REMPE equation, despite been 

developed under local conditions, presents low performance. The annual ETo was calculated 

for all the models and compared against the annual value computed with the FAO 56 P-M 

equation. Overall, results permit to select the best model as a function of the availability of 

weather data in super-humid environments such as páramo ecosystems.   

 

Key Words: Reference evapotranspiration, Penman-Monteith equation, Empirical models, 

Artificial Neural Networks (ANNs), Multivariate Adaptive Regression Spline (MARS), 

Random forests. 

 

 

ANÁLISIS COMPARATIVO DE MODELOS DE ESTIMACIÓN DE 

ETO CON APLICACIÓN AL ECOSISTEMA DE PÁRAMO ANDINO 

HÚMEDO EN EL SUR DE ECUADOR 

 

RESUMEN 

 

A pesar de su importancia, la evapotranspiración es poco estudiada en los ecosistemas de 



Artículo en edición                                                                                                             
 

3 

 

páramo. Este estudio evalúa el rendimiento de 30 modelos, incluidos 21 modelos empíricos 

(basados en radiación, temperatura, combinación y transferencia de masa), 8 modelos de 

redes neuronales artificiales (RNAs) y 1 modelo splines de regresión adaptativa multivariante 

(MARS) para la estimación de la evapotranspiración diaria de referencia (ETo) en 

comparación con la ecuación estándar de Penman-Monteith (FAO 56 P-M). Un objetivo 

adicional fue definir para la región de estudio la mejor alternativa al método estándar. Se 

utilizaron datos disponibles y limitados de dos estaciones meteorológicas, respectivamente 

Toreadora (período 2013-2016) y Zhurucay (período 2014), ambas ubicadas en el ecosistema 

de páramo de la provincia de Azuay, en el sur de Ecuador. Se aplicaron métricas estadísticas 

simples (MBE, MAE y RMSE) para evaluar el rendimiento de los modelos. Se llevó a cabo 

un análisis random forests para definir la relevancia de las variables climáticas en el proceso 

de evapotranspiración. Los resultados de random forests se usaron para ensamblar las RNAs 

usando diferentes combinaciones de variables climáticas. Este enfoque permitió definir la 

RNA con el menor número de entradas que mejor estiman ETo. El modelo MARS permitió 

derivar una ecuación empírica, llamada REMPE, que usa radiación solar y humedad relativa 

mínima como variables de entrada. Del grupo de ecuaciones empíricas, las ecuaciones 

basadas en combinación tienen el mejor rendimiento seguido de las ecuaciones basadas en 

radiación, temperatura y transferencia de masa. Se aplicó un método de calibración para 

mejorar el rendimiento de los modelos probados. Los resultados mostraron que las RNAs 

mejoradas son las más precisas para estimar la ETo diaria, mientras que la ecuación de 

REMPE, a pesar de haber sido desarrollada en condiciones locales, presenta un bajo 

rendimiento. La ETo anual se calculó para todos los modelos y se comparó con el valor anual 

calculado con la ecuación FAO 56 P-M. En general, los resultados permiten seleccionar el 

mejor modelo en función de la disponibilidad de datos meteorológicos en entornos super-

húmedos, como los ecosistemas de páramo.  

 

Palabras clave: Evapotranspiración de referencia, ecuación Penman-Monteith, Modelos 

empíricos, Redes Neuronales Artificiales (RNAs), Splines de Regresión Adaptativa 

Multivariante (MARS), Random forests. 
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1. INTRODUCTION 

 

Evapotranspiration (ET) is the combination of land evaporation and plant transpiration, 

which are crucial processes in the hydrologic cycle (Borges and Mendiondo, 2007; 

Khoshravesh et al., 2017) and accurate prediction of ET is essential for the estimation of the 

water budget and the management of water-related environmental systems (Kumar et al., 

2002; Irmak et al., 2003; Chauhan and Shrivastava, 2009; Khoshravesh et al., 2017; Liu et 

al., 2017). The most obvious method for estimating the actual evapotranspiration (ETc) is the 

use of lysimeters (Valipour, 2015), along with other methods such as the water balance, the 

eddy covariance or the imaging technique (Kumar et al., 2002; Abdullah and Malek, 2016; 

Valipour, 2017); the costs of which are relative high. Because of this, field measurements of 

evapotranspiration are often spatially and temporally scarce, and ETc is usually calculated 

multiplying the reference evapotranspiration (ETo) with a crop specific coefficient (kc) 

(Kumar et al., 2002; Yoder et al., 2005; Chauhan and Shrivastava, 2009; Khoshravesh et al., 

2017). Indirect and affordable estimates based on climatological variables are also available 

(Paes de Camargo and Paes de Camargo, 2000; Kumar et al., 2002; Landeras et al., 2008). 

 

The FAO 56 Penman-Monteith (FAO 56 P-M) equation has been adopted by the scientific 

community as standard method for the estimation of ETo (Allen et al., 2006; Gong et al., 

2006), suitable for most climate conditions (Gong et al., 2006; Efthimiou et al., 2013). The 

method requires the availability of different weather variables such as: air temperature, 

relative humidity, solar radiation and wind speed (Er-Raki et al., 2010). Unfortunately, 
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weather stations that measure the full set of climatic variables needed to calculate ETo are 

worldwide scarce in ecosystems, particularly in highland environments, such as the Andean 

páramo (Córdova et al., 2015). Some authors use empirical equations to estimate ETo 

requiring few weather variables (Jabloun and Sahli, 2008; Er-Raki et al., 2010; Córdova et 

al., 2015). Those equations can be subdivided in mass transfer-, radiation-, temperature-, 

combination- and pan evaporation-based methods (Tabari et al., 2013; Valipour, 2015; Liu 

et al., 2017), regression models (multiple linear, Bayesian, robust and multivariate adaptive 

regression splines (MARS)) (González-Camacho et al., 2008; Kisi, 2016; Khoshravesh et al., 

2017), and machine learning (artificial neural network (ANN), random forests (RF) and 

support vector machine (SVM)) approaches (Kumar et al., 2002; Trajkovic et al., 2003; 

Cervantes-Osornio et al., 2011; Kisi, 2013). Recently, a considerable amount of literature has 

been published on the performance of different models, in different climates, and with the 

FAO 56 P-M as standard (Borges and Mendiondo, 2007; Landeras et al., 2008; Er-Raki et 

al., 2010; Efthimiou et al., 2013). 

 

The research presented in this paper pursued the evaluation of the performance of several 

ETo models (21 empirical models, 8 ANN models, and 1 MARS model) in comparison to 

the FAO 56 P-M equation, with application to the páramo ecosystem of the Andean 

Highlands of southern Ecuador. A comparative study such as this has not been undertaken in 

those ecosystems and will provide a guide to select the most appropriate ETo equation for 

the super-humid conditions of páramos. Firstly, an overview of the equations of the empirical 

models used in the study is given, followed by the nonlinear, non-additive random forest 
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variable selection for the identification of the most influential variables. Thirdly, we 

assembled ANN models with different combinations of variables following their importance 

after random forests analysis, and lastly, we developed for the local climate conditions an 

empirical equation for the estimation of the daily ETo applying the MARS method. 

 

2. MATERIALS AND METHODS 

 

2.1.  Data collection and geographical area 

The meteorological data of 2 fully automatic weather stations, both located in the high-

elevation páramo of Ecuador (Fig 1), were used. The Toreadora weather station is located in 

the Quinuas River microcatchment on the Pacific side of the Andes mountain range, near 

Toreadora Lake, at 3955 m a.s.l. (79.22° W 2.78° S) for which four years of data was 

available (2013-2016). The Zhurucay weather station is situated in the Zhurucay river basin 

on the Atlantic side of the Andes mountain range, at 3780 m a.s.l. (79.24° W 3.06° S) for 

which one year of data was available (2014). The weather stations are equipped with the 

following sensors positioned at 2 m above ground level: a temperature and relative humidity 

probe (CS2150, Campbell Scientific), an anemometer (MetOne 034B Windset, Campbell 

Scientific), a pyranometer (CS300, Campbell Scientific), and a barometer (VAISALA 

PTB110). At both sites the average value of the weather variables were recorded every 5 

minutes. Both stations have excellent quality data, in accordance with the standards outlined 

in Allen (1996). Table 1 shows the annual average values for the meteorological variables 

measured in both stations, as well as the maximum and minimum values for temperature. 
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Figure 1 

 

Table I 

 

2.2.  Reference evapotranspiration estimation methods 

The equations of twenty-two empirical models for the estimation of ETo are presented in 

Table 2, including the FAO 56 P-M equation (standard method). Literature provides ample 

insight in the calculation procedure and the required parameters of the different analyzed 

empirical models. The equations presented in Table 2 were divided in four groups: 

temperature-, radiation-, combination- and mass transfer-based. The FAO 56 P-M equation 

was used as reference for comparison and local calibration of the ETo equations. 

 

Table II 

 

2.3.  Validation and calibration of the empirical models 

To calibrate the empirical models presented in Table 2 against the standard equation (FAO 

56 P-M), the calibration method described in Fooladmand and Haghighat (2007), Tabari and 

Talaee (2011), and Mehdizadeh et al. (2017) was applied. The calibration radius (cr) was 

computed daily as: 
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𝑐𝑟 =
 𝐸𝑇𝑜 𝐹𝐴𝑂 56 𝑃𝑀

𝐸𝑇𝑜 Model
 (1) 

 

Due to the limited weather data, the period 2013-2015 of Toreadora station was used for the 

calibration process, and it was decided not to calculate the monthly average value of the daily 

calibration radius but to calculate the average daily value for the period 2013-2015. This 

approach was applied for each of the 21 empirical ETo estimation methods using the weather 

data of the Toreadora station. The calibrated values for the Zhurucay station were calculated 

using for each estimation method the average daily calibration radius value defined for the 

Toreadora station for the following reasons: 1) the limited size of the weather database of the 

Zhurucay station, and 2) both stations are located in the same geographical area and type of 

ecosystem, at similar elevations. The average value of the calibration radius (cr value) for 

each of the empirical models are presented in Table 3. The 2016 weather data of the 

Toreadora station and the 2014 data of the Zhurucay station were used for validation. 

 

Table III 

 

2.4.  Variable importance measured with random forests 

Random decision forests is a popular and efficient algorithm based on model aggregation 

ideas, for classification, regression and other tasks. The method was proposed by Breiman 

(2001), and allows measuring the importance of variables, like a sensitive analysis, by 

estimating the increase of the predicted error when “out-of-bag” (OOB) data for the 
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considered variable are used while all other variables are left unchanged. Random forests for 

the determination of the importance of variables has been deeply studied by Sandri and 

Zuccolotto (2006), Strobl et al. (2007), Strobl et al. (2008), Genuer et al. (2010), Hapfelmeier 

and Ulm (2013), among others. The random forest decision method, using the randomForest 

R package (Liaw and Wiener, 2015), was applied to define the order of importance of the 

weather data input (solar radiation, temperature, relative humidity, wind, atmospheric 

pressure) of the FAO 56 P-M equation (see Table 4). 

 

Table IV 

 

2.5.  Artificial neural networks 

ANNs are considered a computation tool that emulates the function of neural networks in 

biological systems (Landeras et al., 2008). ANNs extract the relationship of inputs and 

outputs of a process, without explicitly knowing the physical nature of the problem in such a 

way that the result is transmitted in the network until a signal output is given. The procedure 

of ANN-based models is, in general, divided in training, validation and testing performance 

(Abdullah and Malek, 2016). The architecture of an ANN has an input layer (where data are 

introduced to an ANN), the hidden layer(s) (where data is processed), and the output layer 

(where results of given inputs are provided). ANN has been widely applied for estimating 

ETo as a function of weather variables (Kumar et al., 2002; Trajkovic et al., 2003; González-

Camacho et al., 2008; Chauhan and Shrivastava, 2009). 

  



Artículo en edición                                                                                                             
 

10 

 

The ANN models were applied using the software NeuralTools v7.5 (Palisade Corporation). 

The ANN type was the Multi-Layer Feedforward Network (MLFN) or Multi-Layer 

Perceptron Network (MLPN). A sigmoidal function was used as activation in the hidden 

neuron layers. Specifically, NeuralTools uses a hyperbolic tangent function. Training 

consists in finding a set of connection weights and bias terms that direct the network to the 

right answer. During the training process, the Conjugate Gradient Descent method, together 

with the Simulated Annealing method, were used according to Bishop (1995) and Masters 

(1995). To avoid over-learning of ANN models, the available training data (Toreadora 

weather station, period 2013-2015) were divided in two subsets: 80% of patterns for training 

and 20% for cross validation. The 2016 weather data of the Toreadora station and the 2014 

data of the Zhurucay station were used for independent validation of the models. According 

to Koleyni (2010), the performance of a neural network is very often related to its 

architecture. This performance is usually determined through test-error experiments due to 

lack of theory (Laaboudi et al., 2012). To avoid this time-consuming task, NeuralTools 

software allows to choose the option “Best Net search” to obtain the best neural network 

configuration and architecture across test-error performance. The advantage of the neural 

method relies in the possibility of improving the performance criteria by modifying the 

network architecture (Laaboudi et al., 2012). 

 

The combination of inputs (daily values of weather parameters) for each ANN was defined 

after the variable selection with random forests. The three most important parameters were 

solar radiation, minimum relative humidity and maximum air temperature (see Table 4). 
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Combination of input variables were chosen to derive ANN models with the least number of 

weather variables. A summary of tested inputs is listed in Table 5. 

 

Table V 

 

2.6.  Multivariate adaptive regression splines (MARS) 

MARS is a non-parametric model of nonlinear regression that allows explaining the 

dependence of the response variable on one or more explanatory variables (Friedman, 1991). 

Non-parametric modeling does not approximate one single function, but adjusts it to several 

other functions for simple metrics, usually low-order polynomials, defined on a sub-region 

of the domain (parametric adjustment per section), or sets a simple function for each value 

of the variable (global setting) (Sánchez-Molina and Poveda-Jaramillo, 2006). MARS is 

preferred because it allows to approximate complex nonlinear relationships from the data, 

without postulating a hypothesis about the type of nonlinearity present. The construction of 

the algorithm model incorporates mechanisms that allows the selection of relevant 

explanatory variables. The resulting model is easier to interpret as opposed to black box 

models such as artificial neural networks. Finally, the estimation of its parameters is 

computationally efficient and rapid (Velásquez-Henao et al., 2014). Friedman (1991) fully 

presented the MARS algorithm related to non-metric modeling and adaptive computing. The 

MARS method has been widely applied for the forecasting of nonlinear time series (e.g. 

Sánchez-Molina and Poveda-Jaramillo, 2006; Velásquez-Henao et al., 2014), and for its 

implementation we used the earth R package (Milborrow, 2017). 
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MARS was applied using the weather inputs for the FAO 56 P-M equation. Local páramo 

conditions were analyzed by a non-parametric regression, resulting to a model that in this 

research is considered as the Reference Evapotranspiration Model for Páramo Ecosystems 

(REMPE equation). Data from the Toreadora weather station, 2013-2015 period, were used 

for the regression analysis, and data of the periods 2016 (Toreadora) and 2014 (Zhurucay) 

were used for independent validation of the equation. 

 

The REMPE equation is shown below (Rs is in W m-2, and HRmin in %): 

BF1 = max(0, Rs - 151.949); 

BF2 = max(0, 151.949 - Rs); 

BF3 = max(0, RHmin - 82.5); 

BF4 = max(0, 82.5 - RHmin); 

BF5 = max(0, Rs - 234.782); 

BF6 = max(0, Rs - 114.839); 

REMPE ETo= 1.77954 + 0.0064776 * BF1 - 0.00793659 * BF2 - 0.0256779 * BF3 + 

0.0188508 * BF4 - 0.00135548 * BF5 + 0.001299 * BF6 

 

2.7.  Model comparison analysis 

To define similarities and differences among models, the following statistical metrics were 

applied: the mean bias error (MBE), the mean absolute error (MAE) and the root mean square 

error (RMSE): 

𝑀𝐵𝐸 =  
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 
(2) 
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𝑀𝐴𝐸 =  
1

𝑛
∑|𝑃𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

  

 

(4) 

 

where Oi represents observed values, Pi simulated values, and n is the number of considered 

data. 

 

3. RESULTS AND DISCUSSION 

3.1.  Analysis of influential weather variables and model performance 

According to the random forest analysis solar radiation (see Table 4) is the dominant variable 

influencing ETo. The importance level of solar radiation was also found by Córdova et al. 

(2015) and referred as key factor in the ETo FAO 56 P-M equation for páramo ecosystems. 

The second dominant variable is the minimum relative humidity which is clearly visible 

analyzing the 2015 (example year) pattern of the maximum and minimum daily relative 

humidity for the Toreadora station as shown in Fig 2. For the analyzed 4 year period 

fluctuates the maximum value of the relative humidity around 100%, and the minimum value 

fluctuates between 20 and 95%; this pattern is a key factor controlling the evapotranspiration 

dynamics. As stated by Gong et al. (2006) evapotranspiration increases when humidity 

decrease, and evapotranspiration decrease when humidity increase. As revealed by the 

random forest analysis minimum relative humidity seems to have a strong influence on ETo 

because of its high intra-daily variation. 
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Figure 2 

 

Results from the random forest analysis also highlighted that the least dominant variables for 

ETo estimation are wind and atmospheric pressure. This is corroborated by Córdova et al. 

(2015) who determined that wind is the least important variable for ETo estimation in páramo 

environment. Similar results were found by Contreras (2015) who, based on a sensitive 

analysis, stated that in páramo ETo is more susceptible to changes in relative humidity, 

followed by solar radiation, temperature and to a lesser degree by wind speed. To define the 

minimum number of input variables needed to estimate ETo, eight ANN models were 

assembled (see Table 5), while the MARS method resulted into the derivation of the REMPE 

equation, which incorporated solar radiation and minimum relative humidity as the dominant 

input variables. As such, results showed that the variable discrimination procedure performed 

by MARS is in conformity with the variable order of importance classified by the random 

forest analysis. 

 

3.2.  Comparison of ETo estimation methods 

The performance of the ETo empirical equations, ANN models, and the MARS equation for 

both weather stations is given in Fig 3 and Fig 4. Simple statistical metrics (MBE, MAE and 

RMSE) were used to assess the performance of the models versus the FAO 56 P-M model. 

 

Figure 3  
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Figure 4 

 

3.3.  Empirical models 

The statistical analysis revealed that of the 21 empirical equations the combination-based 

group of equations yield the best fitting with the standard FAO 56 P-M equation. The 

following best group of empirical estimation methods are the radiation-based group, followed 

by the temperature-based and mass transfer-based group. The same tendency, although for a 

different environment, was found by Liu et al. (2017). This is explained by the fact that the 

combination-based equations incorporate all, or most, of the weather variables. The VT1 

model perform better in terms of precision that VT2 and RI models, and this for both weather 

stations. In fact, the VT1 and VT2 equations are derived from the FAO 56 P-M equation 

(Valiantzas, 2013), and whereas the VT1 equation requires the whole data set of weather 

data, the VT2 equation does not include the wind speed parameter. Notwithstanding, the VT2 

equation yield great performance, the equation indicates that for the study region wind speed 

is not a very important variable. On the other hand, the RI equation needs a precise roughness 

value to obtain high performance, for which the roughness values provided by Poulenard et 

al. (2001) for three páramo sites were used. 

 

The radiation-based equations also showed high performance. J-R is within this group the 

best model for data from the Toreadora weather station followed by IR, TB and MK; whereas 

for data from the Zhurucay weather station IR was the best model, followed by MK, J-R and 

TB. This might be explained by the stronger influence of the solar radiation variable on the 
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ETo estimation, as confirmed by the random forest analysis. Xu and Singh (2002) and Lu et 

al. (2005) also suggested that radiation-based approaches perform better than temperature-

based methods, all of which corroborate the findings in this study. J-H, P-T and CP models 

showed moderate performance, whereas the TR model depicted the poorest performance for 

both weather stations. In the case of the TR model, results in this study contradict those from 

Trajkovic and Kolakovic (2009), who stated that the Turc equation is suited for ETo 

estimations in humid areas. 

 

The results from the temperature-based group of equations were very similar to those from 

the radiation-based group. According to the random forest analysis possess the maximum 

and minimum temperature variables an acceptable power to explain ETo estimates. For both 

weather stations MC was the best model; B-R and H-S were intermediate and SCH was the 

least. According to Almorox et al. (2015) temperature-based models in tropical climates 

showed important variations upon fluctuations of specific local weather, since temperature 

alone may not be enough to allow a correct estimation of ETo. In this study, most of the 

temperature-based models do not account for solar radiation, vapor pressure deficit, or 

sunlight duration. 

 

The mass transfer-based group of equations presented the poorest performance. This might 

be explained by the fact that the hygrometric deficit (es-ea) in páramos is small, and so it may 

not have a significant effect on the ETo estimation. Also, the incorporation of wind speed 

seems to have a negative effect on this method’s performance, as it was showed by the 
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random forest analysis. As mentioned in the study of Singh and Xu (1997) and Gong et al. 

(2006) wind speed is not a significant factor in ETo estimation models in humid conditions. 

Valipour (2017) stated that the precision of mass transfer-based models is sensitive to the 

parameter variation in each model. The B-W equation in the mass-transfer group appears to 

be an acceptable estimation model for both stations. No other model in this group showed 

appropriate estimates. Similar results were found in Tabari et al. (2013). These authors 

showed that the mass transfer-based equations had the worst performances, while the 

radiation-based and temperature-based models were the best-suited equations for ETo 

estimations. 

 

3.4.  Calibration of empirical models 

Models with an average cr value close to 1 (MC, J-R, VT1, VT2 and RI) denote that the 

estimated values of those models are almost equal to those obtained with the standard FAO 

56 P-M equation (see Table 3). The variation in cr value of the 21 empirical equations, using 

the weather data of the Toreadora station, are shown in Fig 5A. This Box-Whisker plot 

depicts for the period 2013-2015 the variation of the cr value for each of the 21 empirical 

equations prior to calibration, respectively the median (center line), the interquartile range 

(25 to 75%) (box) and the lower and upper quartile range (0-25% and 75-100%) multiple to 

a factor 1.5 (whiskers). The H-S, J-R, IR, MK, P-T, VT1, VT2 and RI show the smallest 

variation in cr value, followed by the SCH, B-R, J-H, TB and CP equations. The TR and the 

equations in the mass-transfer group show the largest variation in cr value. Fig 5B shows the 
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variation in cr value after model calibration for the 2016 validation period of Toreadora 

station. 

 

Figure 5 

 

Several ETo equations improved their performance after calibration, more precisely the SCH, 

IR, CP, MK, J-H, TB and P-T models for the Toreadora weather station and the SCH, H-S, 

J-H, P-T and CP models for the Zhurucay weather station. For both weather stations, the TR 

model increased its performance considerably, whilst the B-R model decreased significantly 

its performance. No significant improvement was observed for the remaining models. 

 

The results obtained after calibration for the temperature-based group of equations are in line 

with the recommendation by Bautista et al. (2009) and Contreras (2015) not to use in tropical 

sub-humid climate temperature-based models without preliminary local calibration. Model 

calibration is also recommended for the radiation-based group; e.g. Sentelhas et al. (2010) 

concludes that the application of the P-T model is only recommended after local calibration. 

All mass transfer-based models, with exception of the B-W equation, improve their 

performance after calibration, but these equations remain poor estimating methods. On the 

contrary, some models (e.g. B-R, TB, IR, B-W) according to MAE and RMSE values present 

better performance in the original form than after calibration (see Figs 3 and 4). Such 

unpredictability could be explained by the high variability in the distribution of cr values. 

Despite this, several of the models with low variability in cr value improved after calibration 
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their performances yielding more accurate results. Based on the analysis it is not 

recommended for the given study region to use, even after calibration, the mass transfer-

based models to estimate ETo. 

 

3.5.  Artificial neural network models 

ANN models showed high performance in estimating daily ETo for both weather stations 

surpassing to a large extent most of the empirical models. Based on the cr values it can be 

observed that ANN2 present higher accuracy for the Toreadora station (2016) (Fig 6A), and 

ANN3 for the Zhurucay station (2014) (Fig 6B). 

 

Figure 6 

 

As was expected, the ANN models showed less error using the weather data of the Toreadora 

station than of the Zhurucay station. This is explained by the fact that the calibration was 

done with data belonging to the Toreadora station. Despite, the ANN models were calibrated 

with Toreadora station data (2013-2015), the models adjusted very well to the validation 

period of the Zhurucay station (2014). Nevertheless, better results could have been obtained 

if there were complete climate databases for the Zhurucay station. 

 

The ANN1 model for the Zhurucay weather station is the least accurate in estimating the 

daily ETo, due to the atmospheric pressure variable that probably introduced noise in the 
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ANN model negatively affecting its performance. The ANN8 model did not incorporate the 

solar radiation variable (the most important variable for ETo estimation according to random 

forests analysis), and consequently its performance was lower compared to the other ANN 

models (Figs 6A and 6B). Despite of that, this model revealed to be much better than most 

of the empirical models used for ETo estimation. It’s highlighted, that ANN6 to ANN8 

models were assembled in different combinations of two or three main climate parameters, 

to anticipate the risk a sensor failed. The configuration and performance of each ANN model 

during calibration are shown in Table 6. 

 

Table VI 

 

Our results suggest that the ANNs are a powerful and accurate tool for modeling ETo in 

super-humid conditions. This is corroborated by several ETo estimation studies that 

highlighted the high accuracy of ANNs in relation to other methods (e.g. Kumar et al., 2002; 

Abdullah and Malek, 2016). 

 

3.6.  MARS model 

The REMPE equation showed an unexpected poor performance for both weather stations, 

respectively RMSE = 0.93 and 0.71, MBE = 0.49 and 0.29 in Toreadora and Zhurucay 

stations. Notwithstanding the fact that the equation was calibrated with data from the 

Toreadora weather station, REMPE surprisingly performed better with data from the 

Zhurucay weather station. For both stations, the results of the REMPE model surpassed those 
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from the mass transfer-based group with exception of the B-W model, which presented better 

performance in its original form. Nevertheless, the REMPE model scored better in 

comparison to the original form of the SCH, J-H and TR equations for the Toreadora station 

and the SCH, H-S, B-R, TR, J-H, P-T and CP equations for the Zhurucay station. However, 

after model calibration of the empiric equations performed the REMPE method only better 

than the B-R equation using the Toreadora data, and better than the IR, B-R, TR, J-H and TB 

equations using the data of the Zhurucay station. Comparison of daily estimates of the 

standard FAO 56 P-M equation and the REMPE model for the validation period of both 

weather stations are shown in Fig 7. 

 

Figure 7 

 

The REMPE model produced a higher error with respect to the best results between the 

original and calibrated empirical models. The mass transfer-based models were the only 

exception. These findings were unanticipated and probably the result of the enormous 

number of factors involved in climate, even in specific locations. This sensitivity makes it 

rather difficult to show that a simple equation, especially a nonlinear, can produce accurate 

predictions (Traore et al., 2010). The short time series of data used for the calibration of the 

empirical models, might also negative affect the performance. Further, the results obtained 

in this study are contradictory to the Aghajanloo et al. (2013) findings, in which their results 

showed that multiple nonlinear regression (MNLR) models can be an acceptable approach to 

predict daily ETo in semi-arid ecosystems. Aghajanloo et al. (2013) showed that increasing 
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the number of input variables in the MNLR models leads to an improvement of the accuracy 

of ETo estimates. The difference in climate and seasonal patterns between super-humid and 

semi-arid ecosystems could be crucial factors partially explaining this contradiction. 

 

3.7.  Annual reference evapotranspiration 

Annual values of ETo were obtained by making the sum of daily ETo values. Fig 8 shows 

for each of the 21 non-calibrated empirical equations the annual ETo value, respectively for 

the stations Toreadora (Fig 8A) and Zhurucay (Fig 8B), and the years 2016 and 2014. The 

full horizontal line in the vertical bar graphs depict the annual value of ETo calculated with 

the FAO 56 P-M standard method. As depicted in Fig 8 yielded the MC and J-R models (Fig 

8A) and the VT1, VT2, MK, J-R, IR and TB models (Fig 8B) an annual value for ETo very 

close to the standard in their original or non-calibrated form. The other models respectively 

under- or overestimated the standard annual ETo value. This result shows that estimating the 

annual ETo without carrying out this previous analysis can have consequences in terms of 

water management, which can introduce water supply problems for agriculture and human 

consumption. 

 

Figure 8 

 

Application of the calibration procedure improved for some of the empirical models the 

estimate of ETo. Consequently, annual estimations of ETo improved as well. This is clearly 

visible in Figs 9A and 9B. Fig 9A depicts the annual ETo value generated with the calibrated 
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21 empirical models, the ANNs and the REMPE model using the 2016 data of the Toreadora 

station, while Fig 9B presents the same information using the 2014 weather data collected in 

the Zhurucay station. The radiation-based models are the equations that improved most, 

specially when using the Toreadora data (Fig 9A). The annual value of ETo fit well with the 

reference annual value of ETo for all ANN models using respectively the 2016 and 2014 data 

from the Toreadora and Zhurucay station, with the exemption of the ANN1 and ANN8 

models when using the data from the Zhurucay weather station (Fig 9B). The mass transfer-

based models overestimated annual ETo values for data from both stations (Figs 9A and 9B). 

As opposed to the pattern described in previous paragraph, after calibration most of the 

models overestimated the reference annual ETo value, and only a few underestimated the 

annual ETo value derived with the FAO 56 P-M equation. 

 

Figure 9 

 

4. CONCLUSIONS 

The need to correctly estimate the reference evapotranspiration is not new and resulted in 

many climate regions to the testing of existing and the development of new methods. In line 

herewith, a comparative analysis was conducted of the performance of existing empirical 

equations, ANN models, and a newly developed MARS-based model for the estimation of 

ETo of wet páramo ecosystems in Southern Ecuador. The performance of the daily ETo 

estimates was defined versus the standard FAO 56 P-M model. The main reason of the search 

for prediction models that require a small number of weather parameters as input is the lack 
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of complete data sets in the high Andean páramo region. Altogether, the combination-based 

models performed well, followed by the radiation-based and temperature-based models. The 

mass transfer-based models had poor performances, with exception of the B-W model; 

however, results indicate that these models should not be recommended for ETo estimations 

in páramo regions because of the super-humid environmental conditions. The calibration 

method significantly improved the performances of several of the tested models. The latter 

should be further explored in view of the development of more advanced calibration methods. 

 

The ANN models showed to accurately estimate ETo although specific patterns, difficult to 

explain, are observed most probably due to complex nonlinear phenomena. The fact that 

ANN models permit to include different combinations of weather variables enabled to define 

the ANN model with the smallest possible number of weather variables as input, without 

decreasing modeling performance. The ANN models are the first approach to be applied for 

estimating the ETo of páramo ecosystems when only few weather data are monitored. The 

REMPE model, using only solar radiation and minimum relative humidity as input variables, 

showed unsatisfactory performance. The question if the performance of the REMPE equation 

can be improved by adding more input variables, is important and open for further studies. 

 

The FAO 56 P-M equation served as reference in the absence of lysimeter measurements. It 

is generally accepted that lysimeter measurements are free of random or systematic error 

making the method useful for validating empirical and model-based methods. However, for 

the given study area by the absence of lysimeter data the question rises whether the FAO 56 
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P-M method is a valid reference to be used under super-humid conditions. Therefore, it is 

suggested that in future studies the FAO 56 P-M equation is calibrated to lysimeter data. 

Notwithstanding this limitation, the research presented an interesting comparison between 

30 methods, requiring varying weather variables as input, to estimate ETo in the páramo 

ecosystem of Andes mountain range in Southern Ecuador. The combination-based models 

and the artificial neural network methods seems to outperform all other tested approaches. In 

terms of software, the study showed that NeuralTools v7.5 and R Package are user friendly, 

easy to implement, and therefor highly recommended for data modeling in similar studies. 
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Figure 1: Location of the weather stations in the páramo ecosystem area of the Andean 

Highlands of southern Ecuador. 
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Figure 2: Daily variation of the maximum and minimum relative humidity in 2015 for the 

Toreadora weather station. 
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Figure 3: Graphical representation of the statistical performance of the 21 ETo estimation methods versus the FAO 56 P-M model 

using the A) Toreadora weather station data of 2016; and B) Zhurucay weather station data of 2014.  
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Figure 4: Graphical representation of the statistical performance of the 30 calibrated ETo estimation methods versus the FAO 56 P-M 

model using the A) Toreadora weather station data of 2016; and B) Zhurucay weather station data of 2014. 



Artículo en edición                                                                                                             
 

36 

 

 

Figure 5: (A) Box-Whisker plot of the variation of the cr values for the 21 empirical 

models, and (B) the Box-Whisker plot of the variation of cr values for the models after 

calibration. 
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Figure 6: Box-Whisker plot of the variation of the cr values for the 8 artificial neural 

network models. (A) Toreadora station (2016), and (B) Zhurucay station (2014). 
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Figure 7: Daily REMPE ETo estimates versus estimates of the standard model (FAO 56 P-

M) for: (A) Toreadora station (2016), and (B) Zhurucay station (2014). Light blue and 

black line depict REMPE and FAO 56 P-M model respectively. 
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Figure 8: Annual estimate of the ETo value for the 21 original empirical models, using 

respectively the 2016 data of the Toreadora weather station (A) and the 2014 weather data 

of the Zhurucay weather station (B). The horizontal line presents the annual ETo value 

using the FAO 56 P-M standard method. 
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Figure 9: Estimate of the annual ETo value for the 30 calibrated methods, using 

respectively the 2016 data of the Toreadora weather station (A) and the 2014 weather data 

of the Zhurucay weather station (B). The horizontal line presents the annual ETo value 

using the FAO 56 P-M standard method. 
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Weather 

station 

Temperature (°C) Relative 

humidity 

(%) 

Solar 

radiation    

(MJ m-2 day-1) 

Wind 

speed 

(m s-1) 

Precipitation 

(mm) Average Maximum Minimum 

Toreadora 5.44 17.2 -2.4 89.4 12.13 2.31 916 

Zhurucay 5.98 15.88 -2.35 91.44 13.90 3.62 1345 

 

Table I: Meteorological variables at the 2 weather stations. 
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Model Reference Formula 

Temperature-based 

Schendel (SCH) Schendel (1967) 𝐸𝑇𝑜 = 16 ∙
𝑇

𝑅𝐻
 

Hargreaves-Samani (H-S) 
Hargreaves and 

Samani (1985) 
𝐸𝑇𝑜 = 0.0023 ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 ∙ (𝑇 + 17.8) ∙ 𝑅𝑎 

Baier-Robertson (B-R) 
Baier and Robertson 

(1965) 
𝐸𝑇𝑜 = 0.157 ∙ 𝑇𝑚𝑎𝑥 + 0.158(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) + 0.109 ∙ 𝑅𝑎 − 5.39 

McCloud (MC) McCloud (1955) 𝐸𝑇𝑜 = 0.254 ∙ 1.071.8𝑇 

Radiation-based 

Jones-Ritchie    (J-R) 
Jones and Ritchie 

(1990) 

𝐸𝑇𝑜 = 𝛼 ∙ (0.00387 ∙ 𝑅𝑠(0.6 ∙ 𝑇𝑚𝑎𝑥 + 0.4 ∙ 𝑇𝑚𝑖𝑛 + 29) 

5°C < 𝑇𝑚𝑎𝑥 < 35°C        𝛼 = 1.1 

𝑇𝑚𝑎𝑥 > 35°C        𝛼 = 1.1 + 0.05 ∙ (𝑇𝑚𝑎𝑥 − 35) 

𝑇𝑚𝑎𝑥 < 5°C        𝛼 = 0.1 ∙ exp[0.18 ∙ (𝑇𝑚𝑎𝑥 + 35)] 

Irmak (IR) Irmak et al. (2003) 𝐸𝑇𝑜 = −0.611 + 0.149 ∙ 𝑅𝑠 + 0.079 ∙ 𝑇 

Makkink (MK) Makkink (1957) 𝐸𝑇𝑜 = 0.61 ∙
∆

∆ + 𝛾
∙

𝑅𝑠

𝜆
− 0.12 

Turc (TR) Turc (1961) 

𝐸𝑇𝑜 = 𝑎𝑇 0.013 ∙
𝑇

𝑇 + 15
∙

23.8856 ∙ 𝑅𝑠 + 50

𝜆
 

𝑅𝐻 ≥ 50%     𝑎𝑇 = 1 

𝑅𝐻 < 50%     𝑎𝑇 = 1 + (50 − 𝑅𝐻) 70⁄  
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Jensen-Haise     (J-H) 
Jensen and Haise 

(1963) 
𝐸𝑇𝑜 = 0.0102 ∙ (𝑇 + 3) ∙ 𝑅𝑠 

Priestley-Taylor (P-T) 
Priestley and Taylor 

(1972) 
𝐸𝑇𝑜 = 1.26 ∙

∆

∆ + 𝛾
∙

𝑅𝑛 − 𝐺

𝜆
 

Tabari (TB) Tabari et al. (2013) 𝐸𝑇𝑜 = −0.642 + 0.174 ∙ 𝑅𝑠 + 0.0353 ∙ 𝑇 

Copais (CP) 
Alexandris et al. 

(2006) 

𝐸𝑇𝑜 = 0.057 + 0.227 ∙ 𝐶2 + 0.643 ∙ 𝐶1 + 0.0124 ∙ 𝐶1 ∙ 𝐶2 

𝐶1 = 0.6416 − 0.00784 ∙ 𝑅𝐻 + 0.372 ∙ 𝑅𝑠 − 0.00264 ∙ 𝑅𝐻 ∙ 𝑅𝑠 

𝐶2 = −0.0033 + 0.00812 ∙ 𝑇 + 0.101 ∙ 𝑅𝑠 + 0.00584 ∙ 𝑇 ∙ 𝑅𝑠 

Combination-based 

Valiantzas (VT1) Valiantzas (2013) 

𝐸𝑇𝑜 = 0.051 ∙ (1 − 𝛼) ∙ 𝑅𝑠 ∙ √𝑇 + 9.5 − 0.188 ∙ (𝑇 + 13) ∙ (
𝑅𝑠

𝑅𝑎

− 0.194)

∙ [1 − 0.00015 ∙ (𝑇 + 45)2 ∙ √𝑅𝐻 100⁄ ] − 0.0165 ∙ 𝑅𝑠 ∙ 𝑢0.7 + 0.0585

∙ (𝑇 + 17) ∙ 𝑢0.75 ∙
[(1 + 0.00043 ∙ (𝑇𝑚𝑎𝑥 − 𝑇min)2)2 − 𝐻𝑅 100⁄ ]

[1 + 0.00043 ∙ (𝑇𝑚𝑎𝑥 − 𝑇min)2]
+ 0.0001𝑧 

Valiantzas (VT2) Valiantzas (2013) 

𝐸𝑇𝑜 = 0.00668 ∙ 𝑅𝑎 ∙ √(𝑇 + 9.5) ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑑𝑒𝑤) − 0.0696 ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑑𝑒𝑤) − 0.024 ∙ (𝑇

+ 20) ∙ (1 −
𝑅𝐻

100
) − 0.0455 ∙ 𝑅𝑎 ∙ (𝑇𝑚𝑎𝑥 − 𝑇dew)0.5 + 0.0984 ∙ (𝑇 + 17)

∙ [1.03 + 0.00055 ∙ (𝑇𝑚𝑎𝑥 − 𝑇min)2 − (𝑅𝐻 100)⁄ ] 

Rijtema (RI) Rijtema (1966) 𝐸𝑇𝑜 =
(

∆ ∙ 𝑅𝑛
𝜆

) + 𝛾 ∙ 𝑟 ∙ 𝑢0.75 ∙ (𝑒𝑠 − 𝑒𝑎)

(∆ + 𝛾)
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Mass transfer-based 

Mahringer (MA) Mahringer (1970) 𝐸𝑇𝑜 = 2.86 ∙ 𝑢0.5 ∙ (𝑒𝑠 − 𝑒𝑎) 

Trabert (TR) Trabert (1896) 𝐸𝑇𝑜 = 3.075 ∙ 𝑢0.5 ∙ (𝑒𝑠 − 𝑒𝑎) 

WMO WMO (1966) 𝐸𝑇𝑜 = (1.298 + 0.934 ∙ 𝑢) ∙ (𝑒𝑠 − 𝑒𝑎) 

Brockamp-Wenner (B-W) 
Brockamp and Wenner 

(1963) 
𝐸𝑇𝑜 = 5.43 ∙ 𝑢0.456 ∙ (𝑒𝑠 − 𝑒𝑎) 

Rohwer (RO) Rohwer (1931) 𝐸𝑇𝑜 = (3.3 + 0.891 ∙ 𝑢) ∙ (𝑒𝑠 − 𝑒𝑎) 

Penman (PE) Penman (1948) 𝐸𝑇𝑜 = (2.625 + 0.713 ∙ 𝑢) ∙ (𝑒𝑠 − 𝑒𝑎) 

FAO standard equation 

Penman-Monteith (FAO 56 

P-M) 
Allen et al. (2006) 𝐸𝑇𝑜 =

0.408 ∙ ∆ ∙ (𝑅𝑛 − 𝐺) + 𝛾 ∙ [900 (𝑇 + 273)⁄ ] ∙ 𝑢 ∙ (𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾 ∙ (1 + 0.34 ∙ 𝑢)
 

 
ETo is the reference crop evapotranspiration (mm day-1), Rn the net radiation (MJ m-2 day-1), G the soil heat flux (MJ m-2 day-1), γ the psychrometric constant (kPa 

°C-1), λ the latent heat of vaporization (MJ kg-1), es the saturation vapour pressure (kPa), ea the actual vapour pressure (kPa), Δ the slope of the saturation vapour 

pressure-temperature curve (kPa °C-1), T the average daily air temperature (°C), u the mean daily wind speed at 2 m (m s-1), r the roughness coefficient, z the site 

elevation (m), Tmin the minimum air temperature (°C), Tmax the maximum air temperature (°C), Tdew the dew point temperature (°C), RH the average relative 

humidity (%), Ra the extraterrestrial radiation (MJ m-2 day-1), Rs the solar radiation (MJ m-2 day-1), and α is equal to 0.23. For the calculation of T and Tdew, the 

reader is referred to Allen et al. (2006), and for the definition of the roughness coefficient value (r) for páramo ecosystem to Poulenard et al. (2001). 

 

 

 

Table II: Selected models and reference equation to estimate the potential daily evapotranspiration with their reference, formula, and 

parameterization. 
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Model Type cr 

SCH 

Temperature-based 

1.62 

H-S 0.80 

B-R 0.46 

MC 1.01 

J-R 

Radiation-based 

1.08 

IR 1.23 

MK 1.22 

TR 3.69 

J-H 1.73 

P-T 0.79 

TB 1.32 

CP 1.42 

VT1 
Combination-based 

0.95 

VT2 0.93 

RI 0.94 

MA 

Mass transfer-based 

2.60 

TR 2.42 

WMO 3.23 

B-W 1.42 

RO 2.05 

PE 2.57 
 

 

Table III: Average calibration radius of each of the 21 ETo estimation methods using the 

Toreadora station weather data period 2013-2015. 
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Variable Score 

Rs 100 

HRmin 46.84 

Tmax 19.94 

HRmax 2.40 

u 1.85 

Tmin 1.06 

P 1.02 
Tmax (maximum air temperature in °C), Tmin (minimum air temperature in °C), Rs 

(solar radiation in W m-2), HRmin (minimum relative humidity in %), HRmax 

(maximum relative humidity in %), u (wind speed at 2 m height in m s-1), P 

(atmosphere pressure in mbar). 

 

Table IV: Importance of the input variables of the FAO 56 P-M equation according to random 

forests method. 
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Variable 

inputs 
ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 

Rs • • • • • • •  

HRmin • • • • • •  • 

Tmax • • • • •  • • 

HRmax • • • •     

u • • •      

Tmin • •       

P •        
Units are the same as in Table 4. 

 
Table V: Summary of the set of inputs for each of the used ANN’s. 
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Model Structure 

RMSE 

Training 

(mm day-1) 

RMSE 

Testing 

(mm day-1) 

Inputs 

ANN1 7-5-1 0.048 0.046 
Rs, HRmin,max, Tmin,max, 

u, P 

ANN2 6-3-1 0.051 0.056 
Rs, HRmin,max, Tmin,max, 

u 

ANN3 5-5-1 0.054 0.049 Rs, HRmin,max, Tmax, u 

ANN4 4-5-1 0.062 0.064 Rs, HRmin,max, Tmax 

ANN5 3-4-1 0.065 0.083 Rs, HRmin, Tmax 

ANN6 2-3-1 0.104 0.104 Rs, HRmin 

ANN7 2-4-1 0.094 0.146 Rs, Tmax 

ANN8 2-3-1 0.221 0.202 HRmin, Tmax 
Structure: number of inputs-number of neurons/nodes in the hidden layer-number of outputs. 

 
Table VI: Summary of the training and cross validation processes of the evaluated ANNs 

using the Toreadora weather data of the 2013-2015 calibration period. 

 


