Meteoro
logica

2	ESTIMATION OF THE FLOODED AREA OVER THE PANTANAL, A			
3	SOUTH AMERICAN FLOODPLAIN, USING MODIS DATA			
4				
5	Anthony Schrapffer ^{1,2,3} , Lucía María Cappelletti ^{1,2,3} y Anna Sörensson ^{1,2,3}			
6				
7	¹ Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Buenos			
8	Aires, Argentina.			
9	² CONICET – Universidad de Buenos Aires. Centro de Investigaciones del Mar y la			
10	Atmósfera (CIMA). Buenos Aires, Argentina.			
11	³ CNRS – IRD – CONICET – UBA. Instituto Franco-Argentino para el Estudio del			
12	Clima y sus Impactos (UMI 3351 IFAECI). Buenos Aires, Argentina			
13				
14	Autor correspondiente: Anthony Schrapffer, <u>anthony.schrapffer@cima.fcen.uba.ar</u>			
15				
16	Manuscrito recibido el 5 de julio de 2021, en su versión final el 22 de diciembre de 2021			
17				
18	ABSTRACT			
19				
20	Tropical floodplains, such as Pantanal in Central South America, are important features for			
21	land-atmosphere interactions. Schemes to account for floodplains should therefore be			
22	included in Earth System Models, but this requires observations of flooded area for			
23	validation. Satellite data is a possible solution to estimate the flooded area but it is important			
24	to evaluate the different flood detection algorithms available in order to use the most efficient			
25	for the region. This work explores different methods to estimate the flooded area from the			
26	MODIS MOD09A1 satellite surface reflectance product using spectral indexes (mNDWI,			
27	NDMI, NDMI-NDVI) to detect the presence of water. We include the traditional threshold-			
28	based methods but also some unsupervised classification methods such as the k-means and			
29	the Principal Component Analysis applied on the water-related spectral indexes. The			

30 calibration and validation of these methods are based on the hydrological knowledge of the 31 region, coming from land surface models, river discharge observation and from previous 32 satellite estimations of the flooded area. The NDMI index seems too sensible to the 33 vegetation which leads to error in the estimation of the flooded area. The other methods were 34 spatially and temporally consistent with previous studies over the Pantanal.

35

36 Key Words: Floodplains, flood detection, remote sensing, Pantanal, MODIS.

37

38

39

RESUMEN

40 Las llanuras de inundaciones tropicales, como el Pantanal en Suramérica Central, son 41 importantes para las interacciones suelo-atmósfera. Por lo tanto, los esquemas que 42 representan las llanuras de inundación tienen que ser incluidos en los Modelos del Sistema 43 Tierra, pero eso requiere observaciones del área inundada para validación. Los datos 44 satelitales son una posible solución para estimar la superficie inundada, pero es importante 45 evaluar los diferentes algoritmos disponibles para utilizar el más eficiente para cada región 46 de interés. Este trabajo explora diferentes métodos para estimar la superficie inundada con el 47 producto de reflectancia de la superficie MODIS con el uso de índices espectrales (mNDWI, 48 NDMI, NDMI-NDVI) para detectar la presencia de agua sobre Pantanal. Incluimos los métodos más comunes basados en el uso de umbrales y también algunos métodos de 49 50 supervisión no clasificada como los k-means y el Análisis de Componentes principales 51 aplicados a los índices espectrales relacionados con la presencia de agua. La calibración y la 52 validación de estos métodos está basado en los conocimientos hidrológicos de la región, 53 proviniendo de modelos de superficie, observaciones de caudal y de estimaciones de la 54 superficie inundada por satélite realizada en trabajos anteriores. El índice NDMI parece 55 demasiado sensible a la vegetación lo que lleva a errores en la estimación de la superficie 56 inundada. Los otros métodos son espacial y temporalmente consistente con estudios previos 57 sobre el Pantanal.

Meteoro logica

Artículo en edición

59 Palabras clave: Llanuras de inundaciones, Detección de inundaciones, Teledetección,
60 Pantanal, MODIS.

61

62 1) INTRODUCTION

63 The floodplains are wetlands which are temporarily or permanently flooded and where there 64 are strong interactions between the different terrestrial hydrological processes such as river 65 discharge, the evapotranspiration from plants, the evaporation from open water surfaces and 66 the vertical movement of water between the surface soil and the saturated zone. These large 67 floodplains are places of rich biodiversity and provide important ecosystem services such as 68 water purification, river stream regulation and carbon sequestration. The monitoring and 69 improved comprehension of these regions are vital for their revalorization and conservation. 70 Remote sensing products are powerful tools to monitor the spatiotemporal evolution of these 71 extensive floodplains with a reasonable frequency. Satellite estimations of the flooded areas 72 are also necessary to develop a correct representation of the hydrology of these regions in 73 Land Surface Models and Earth System Models.

74

75 The periodic flooding of the floodplains related to the overflow of the river is fundamental 76 for the local ecosystem as it is driving the lateral exchange of water and nutrients in the river 77 floodplains system (cf. flood pulse concept, Junk et al., 1989). These exchanges are one of 78 the reasons why the floodplains are very productive ecosystems and considered as 79 biodiversity hotspots. However, large floodplains are also regions where the in-situ 80 observations are not sufficient to reconstruct their full dynamics, as opposed to smaller and 81 more homogeneous wetlands and to unvegetated regions which can be more easily monitored 82 and where the estimation can be carried out more directly by spectral indices. Thus it is 83 difficult to estimate the temporal variability and map the spatial variability of the floods over 84 large floodplains.

85

86 Large tropical floodplains, such as the Pantanal in central South America, are regions of

87 strong land-atmosphere interactions due to due to a high level of evaporation in relation with 88 the presence of open-water surfaces and of transpiration in relation with the increased soil 89 moisture (Schrapffer et al., 2020). This induces strong gradient of land-atmosphere fluxes 90 and temperature between the floodplains and the neighbouring regions. This is why the 91 floodplains processes tend to be ever more integrated in Land Surface Models (Schrapffer et 92 al., 2020; Dadson et al., 2010; Getirana et al., 2021) because this improves the representation 93 of the hydrological cycle and it will change the sensible and latent fluxes which may have an 94 impact on atmospheric conditions and, thus on the regional precipitation (Taylor, 2010). 95 These are important advances regarding the growing interest of coupled simulations to study 96 the land-atmosphere interactions. In order to be able to calibrate and evaluate the floodplains 97 scheme in Land Surface Models, the estimates of the temporal and the mapping of the spatial 98 evolution of the flooded surfaces are crucial.

99

100 Remote sensing has proven to be a helpful tool to estimate large-scale land processes and 101 may be helpful to estimate the flooded area over large tropical floodplains (Padovani, 2010; 102 Ogilvie et al., 2015). There are two types of sensors which can be used to estimate the flooded 103 areas: the Optical and Synthetic Aperture Radar (SAR) sensors. SAR data presents some 104 advantages to detect the flooded area as it is not affected by clouds because it uses the 105 microwave bands and because it can provide data during both day and night (Pereira et al., 106 2019). Despite this, SAR data may be affected by speckle noise (Inglada et al., 2016) and 107 may be largely impacted by confounding effects associated with the surface conditions. 108 Moreover, the processing of this type of data is more complex compared to optical data 109 (Niedermeier et al., 2005). On the other hand, optical data are relatively easy to manipulate 110 and allow to obtain both the flooded area and the presence of vegetation or other features in 111 a relatively simple way. Therefore, in this work, we chose to employ optical data. There are 112 two major difficulties to handle in this work: (1) the relatively large extension of the region 113 and (2) the issue of the cloud cover over such a large region. The first point can be managed 114 by using a satellite product with a lower resolution such as a MODIS product. For the second 115 point, a post-processed product which uses a lower temporal resolution can be used. Some

Meteoro logica

of these lower temporal resolution products are created by merging the different images available to produce images with the lowest cloudiness possible. There are two similar MODIS products which correspond to this type of post processing: MOD09A1 and MYD09A1.

120

121 Traditional methods used to estimate the extension of flooded surfaces rely on spectral 122 indices and thresholds (Ogilvie et al., 2015). Some spectral indices may highlight the 123 presence of water by higher values. However, some other land features may generate noise 124 and make it difficult to directly detect the flooded area using a threshold. For example, the 125 estimation of flooded area over regions containing lush vegetation may be confounded with 126 the vegetation water content due to the large annual variability of water content related to the 127 flood pulse.

128

This is why, although the presence of water may be overestimated by higher values in some spectral indices, some land features such as the vegetation might generate noise and make it difficult to directly detect the flooded area using a threshold. Thus more sophisticated methods may lead to an improvement of the estimate. The spectral indices considered in this study contain information about the water content and the status of the vegetation such as the modified Normalized Water Index (mNDWI), the Normalized Difference Moisture Index (NDMI) and Normalized Difference Vegetation Index (NDVI).

136

137 This study aims to compare the use of different methods based on spectral indexes to estimate 138 the flooded area and to overcome the difficulties of estimating the flooded surface over large 139 and complex regions such as Pantanal. This is done by comparing different traditional 140 approaches: (1) using the classical approach of applying a threshold over spectral indexes 141 and (2) using unsupervised classification methods such as the k-means and the Principal 142 Component Analysis (PCA). We aim at an optimized method that is both as robust and as 143 simple as possible. The estimates obtained are then validated by a previous satellite estimate 144 made by Padovani (2010) and by the river height at Ladário station.

146 This paper is organized as follows. Section 2 contains the Methodology and Dataset used. 147 Section 3 contains the results and the evaluation of the temporal and spatial estimation of the 148 flooded area by the different methods considered. Section 4 contains the discussion and 149 conclusion.

Meteoro

logica

150 **2) METH**

2) METHODOLOGY AND DATASETS

151 **2.a) REGION OF INTEREST: THE PANTANAL**

The Pantanal, the world's largest floodplains, has an extension of 150.000 km² and is located 152 153 in the tropical region of southwestern Brazil (see Figure 1). The flat lands of Pantanal range 154 between 80 and 150 m.a.s.l. of altitude while the surrounding mountain ranges of the 155 Cerrados from its north/northeast to its southeast ranges between 200 and 1.400 m.a.s.l. 156 (Alho, 2005). It has a regular annual cycle of flooding driven by the precipitation over the 157 Cerrados during the rainy season (December to February). Due to the flat slopes of the 158 Pantanal, it takes between 3 and 5 months for the water flowing from the Cerrados to cross 159 the Pantanal. This excess of water flowing into Pantanal through the river system and slowed 160 down by the topography generates important floods. The climatological season of floods 161 occurs between February and May (Penatti et al., 2015).

162

2.b) MODIS data: MOD09A1

163 The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra MOD09A1 and 164 MYD09A1 products have been chosen to perform this study for various reasons. First, they have a resolution of 500m which is higher than some other surface reflectance products such 165 166 as Landsat (30 m resolution) but it is sufficient and more manageable as we are dealing with 167 an extensive region. The MOD09A1 (MYD09A1) product is constructed from an 8-day 168 composite period and gives an estimate of the surface spectral reflectance for the 7 first bands 169 of Terra (Aqua) MODIS with corrected atmospheric effects (gases, aerosols, Rayleigh 170 scattering). This correction consists in (1) an adjustment to include the effect of the solar

171 zenith angle in order to obtain the top-of-atmosphere value and (2) the correction of the error 172 related to the atmospheric scattering and absorption due to the presence of gases and aerosols 173 in the atmosphere and to the spherical albedo (Vermote et al., 2006). The MODIS satellites provide data for each location each 1-2 days. This permits creating a composite image, 174 175 selecting for each 8-days period the highest quality data for each pixel (lower view angle, 176 absence of clouds, clouds shadow and aerosols) to obtain the MOD09A1 and MYD09A1 177 products. Two tiles were considered to fully include the Pantanal: h12v10 and h12v11. Both 178 products have been retrieved from the NASA Earth Data Search (https://search.earth 179 data.nasa.gov).

180

181 The flooding cycle of the Pantanal is annual, thus a temporal resolution from a couple of 182 weeks to a month is acceptable. Thus, both products can be used for this purpose. Although 183 this product intends to avoid clouds and other inconveniences, during the rainy season the 184 images can still be affected by the presence of clouds due to an excessive cloud coverage 185 during the rainy season. The presence of clouds has been assessed in two steps. Firstly, the 186 Quality Bit Flags of the MODIS products over the Pantanal were used to obtain the mask of 187 the Pantanal which is not cloudfree nor covered by clouds shadows. For values of cloud cover 188 fraction over the Pantanal higher than 5%, the image was discarded. After that, all the images 189 retained were checked visually to verify that they didn't contain coarse cloud features over 190 the Pantanal that remained undetected by the Quality Bit Flags. Between 2002 and 2021, 191 54% of the images available were considered cloudless over Pantanal in MOD09A1 and 35% 192 for MYD09A1. The dates available without clouds for MOD09A1 and for MYD09A1 have 193 been compared. It should be highlighted that the major differences between MOD09A1 and 194 MYD09A1 are the availability of data as MOD09A1 was launched in 2000, two years before 195 MYD09A1 (Savtchenko et al., 2004). During the period they have in common, MOD09A1 196 has 140 cloudless dates which are considered as cloudy in MYD09A1 while MYD09A1 only 197 has 7 cloudless images which are considered as cloudy in MOD09A1. These 7 images 198 represent the dry season, a period of lower cloudiness and thus of major availability of images 199 also in MOD09A1. For these reasons, only the product MOD09A1 has been retained

Meteoro logica

Artículo en edición

although the use of both products MYD09A1 may be considered to complete the data in
further studies. All the MOD09A1 cloudless images have been confirmed as such by the
visual check, while MYD09A1 was not checked visually since this product was not used for
this study.

204

The different methods of flood detection presented in this study have been calibrated over the 2002-2004 period. Figure 2 represents for each month the total number of MODIS MOD09A1 images available and the quantity of exploitable images, i.e. cloudless. As expected the number of cloudless images is strongly affected by the wet season (November to March).

210 2.c) SPECTRAL INDEXES

The Spectral Indexes have two main objectives: (1) to isolate some specific land features signals such as signals related to the vegetation (Xue and Su, 2017), the presence of water (Acharya et al., 2018) or the soil composition (van der Meer et al., 2012); while (2) they are insensitive to other perturbing signals (Verstraete and Pinty, 1996).

215

The spectral indices presented here are based on normalized differences between reflectance at different wavelengths. The NDVI emphasizes the presence of vegetation while the rest of the indices try to underline the presence of water bodies. All these indexes are resumed in Table I.

220

The main spectral indexes are constructed based on some basic processes: the vegetation strongly reflects the Near InfraRed (NIR) and the Green but has a very low reflectance in the Red wavelength. The ShortWave InfraRed (SWIR) is very sensitive to the water content and in particular to the vegetation water content.

225

These indexes are shown in Figure 3 over the Pantanal region for two different dates: one during the dry season (21st August 2002) and one during the wet season (15th April 2003).

Meteoro logica

The NDMI gives a good indication over the flooded vegetation may be falsely detecting highly vegetated regions as flooded. To combine the information contained in NDMI with NDVI seems a possible solution to better distinguish between these two land covers (cf. NDMI-NDVI index in Figure 3.d and Figure 3.h).

232

233 2.d) FLOODED AREA DETECTION

Two methods are tested in this study: (1) a threshold-based method using the indices that seemed to better represent the presence of water (mNDWI; NDMI; NDMI-NDVI) and (2) using two different unsupervised classification methods using 3 indices (mNDWI, NDMI and NDVI).

238

239 The first method of unsupervised classification is the k-means (Lloyd, 1982) which is a 240 clustering method to regroup the data into different categories. The number of categories or clusters is given by the parameter "k". number of clusters. Each cluster is defined by its 241 242 centroid and the membership of each data point to a certain cluster will be determined 243 according to the nearest centroid. The algorithm tries to minimize the total distance between 244 the centroids and the data. The election of the k-value depends on the problem that is being 245 clusterized. Different values have been evaluated. For k-value under 6, the output was not 246 stable while k-values higher than 6 added more complexity to the description of the data 247 which wasn't necessary adding value to the discrimination between flooded and not flooded 248 pixels. Thus, the k-value chosen for this study is 6.

249

The second unsupervised classification method uses the Principal Component Analysis (PCA – Jollife and Cadima, 2016) method which finds an orthogonal projection that best fits the data and allows to reduce the number of dimensions. As the data has 3 dimensions (due to the 3 indexes considered), the maximal number of dimensions that can be considered for the PCA is 3. The number of dimensions considered in this study is set at 2. The second

Meteoro logica

dimension refers to the spatial structure of the flooded area. This is not the case for the first
dimension of the PCA which seems to be representing other processes such as the vegetation.
Higher values in the second dimension of the PCA corresponds with areas with higher values
of mNDWI, NDMI and to the spatial structure of the floods (cf. Figure 1). The value of the
pixels over this axis resumed the flood related information from the 3 indexes. Then, a
threshold has to be established to classify each pixel into the flooded / not flooded categories.

261

262

2.e) UNSUPERVISED CLASSIFICATION INPUT

263 In order to have a single model that would take into account the variability of the vegetation 264 along the year and that would underline the flood processes, the sample input data to generate 265 the PCA and the k-means model have been randomly selected from two images. As the 266 Pantanal has a very marked wet and dry season, one of these images corresponds to the dry 267 season (from June to September) and the other one at the end of the wet season (From 268 November to March) which also corresponds to the climatological season of floods. The 269 images chosen correspond to the dates that were used to illustrate the spectral indexes in 270 Figure 3: the 21st of August 2002 for the dry season and the 15th of April 2003 for the wet 271 season. A total of 10000 pixels per image has been used.

272

The PCA and k-means processes are quite sensible to the input. In this case, the objective is to represent the variability of the flooded area. The data is mainly composed of not flooded pixels as demonstrated by the distribution in Figure 4 whose maximum is located in the low-NDMI / low-mNDWI region. For this reason, although the 10000 pixels per image were randomly selected, pixels with higher values of mNDWI have been favored. Another filter has been applied to avoid selecting the outlier which were mainly pixels with extremely low NDMI value (cf. Figure 4).

280

281 The k-means clustering with k=6 is shown in Figure 5. In the spatial location of the clusters

282 in the (mNDWI, NDMI) space (Figure 5.c), the cluster number 0 to 3 have a low mNDWI 283 value, reasons why they are considered as not flooded and their NDMI index value is growing 284 from the cluster 0 to the cluster 3. Looking at the difference between the k-means 285 representation of the dry season image (Figure 5.b) and the wet season image (Figure 5.a) 286 maps, we can see that they may represent different conditions of vegetation and that low 287 vegetation regions in the dry season image become high vegetation region during the wet 288 season. Pixels in the clusters 4 and 5 have a higher mNDWI value and can be considered as 289 flooded. The pixels in cluster 5 include the pixels with maximal mNDWI values, thus we can 290 consider that cluster 5 represents the open water pixels and pixel 4 the flooded vegetation.

291

292 The second dimension of the PCA is shown in Figure 6. We can deduce that higher values 293 along this dimension represent the flooded pixels.

294

295

2.f) VALIDATION DATA

296 Ground-based observations of the flooded area over such a large area as the Pantanal are 297 scarce. The validation of a flood estimate method may rely on two aspects: (1) the knowledge 298 of the local hydrological network and the characteristics of the regions; (2) the comparison 299 with previous satellite estimates.

300

301 Hamilton et al. (1996) is a reference for the flooded area estimate over the region. It found a 302 relationship between the flooded area over the Pantanal estimated between 1979 and 1987 303 and the river gauge at the Ladário station obtained from the Brazilian National Water Agency (Agência Nacional de Águas - ANA). The flooded area has been estimated using the 304 305 brightness temperature from a satellite passive microwave sensor. Hamilton et al. (2002) 306 further extended this relationship from 1900 to 2000 to obtain an estimation of the evolution 307 of the flooded area. Although these results are not available for the period of availability of 308 MODIS, they point out that the river gauge data from the Ladário station (see Figure 1) can

309 be used to assess the flooded area as these data are strongly correlated.

310

311 We will also for comparison use the estimation of (Padovani, 2010) which has been validated 312 in comparison with Hamilton et al. (2002). Padovani (2010) applied a Linear Model of 313 Spectral Mixture (LMSM) to MODIS MOD13Q1 images to estimate the temporal and map 314 the spatial evolution of the flooded area over the Pantanal. The MOD13Q1 product includes 315 vegetation description (NDVI and EVI indexes) and the corresponding Red, Near Infrared, 316 blue and Mid-Infrared bands from MODIS. A 16-days composite image is created by 317 selecting the highest quality data for each pixel (lower view angle, absence of clouds) and by 318 favoring higher values of NDVI/EVI indexes. Thus, although this product is also constructed 319 from MODIS data, it differs from MOD09A1 because of its focus on vegetation processes 320 and because of the lower temporal resolution (images each 16 days instead of 8). The method 321 developed by Padovani (2010) uses a single image (May 25th 2007) to calibrate by finding 322 a linear relationship between the reflection at different wavelengths available and the soil, 323 vegetation and water cover. By applying this relationship to the other images, it allows 324 estimating the fraction of soil, vegetation and water cover. The flooded area is then 325 determined by applying a threshold on the water cover fraction.

326

Other types of datasets have been considered for the spatial validation of the methods presented in this study such as WaterMAP (Pekel et al., 2016) and GFPLAINS250m. WaterMAP is a global dataset available between 1984 and 2015 which contains the monthly estimate of the surface water location constructed from optical sensors (Landsat 5 TM; Landsat 7 ETM+ and Landsat 8 OLI), regional datasets and from inventories. GFPLAINS250m is a 250m resolution dataset drawing the delimitations of what can be considered as floodplains based on Digital Elevation Model datasets.

334

The different thresholds required were calibrated with the Padovani (2010) time series for the period 2002-2004. The respective threshold values for the different methods are resumed in Table II.

338

The mean flood frequency from Padovani (2010) will also be used as a comparison. However, as it improves the readability of the map, the modification of the flood frequency map from Padovani (2010) presented in Fluet-Chouinard et al., (2015) can also be used to assess the spatial representation of the floodplains in the different methods used in this work.

Meteoro logica

343 3) RESULTS

The different satellite estimate methods that have been described in Section 2 and calibrated
over the 2002-2004 period have been applied to MODIS MOD09A1 between 2002 and 2009.
Their temporal evolution and spatial representation are assessed in comparison with
Padovani (2010).

348

3.a) EVALUATION OF THE TEMPORAL EVOLUTION

The temporal evolution of the flooded area estimated over the Pantanal by the thresholdbased methods are presented in Figure 7 and Figure 8 shows the evaluation of the results for the unsupervised classification methods. The comparison of the different estimates with Padovani (2010) is summarized through some basic comparative statistical indexes in Table III (correlation, root mean square error - RMSE - and percentage bias – PBIAS).

354

Except the NDMI index, the different methods are coherent with the study of Padovani (2010). Among them, the PCA and NDMI-NDVI have higher values of flooded area while the mNDWI index and the k-means have lower values of the flooded area.

358

359 The NDMI-based estimation is less correlated than the other methods with Padovani but this

360 correlation increases when integrating the information from the NDVI index (Figure 7.c).

361 This difference may be related to the influence of the vegetation in the NDMI index.

362

363 The river stage at Ladário is delayed compared to both Padovani (2010) and the methods

evaluated although the amplitude of the river gauge and the estimated flooded area are
similar. Following the Hamilton et al. (1996) estimation of the flooded area, the river stage
at Ladário should be strongly correlated. Further analysis should be performed to understand
these differences.

368

3.b) EVALUATION OF THE SPATIAL EVOLUTION

Figure 9 shows the comparison of flood frequency between 2002 and 2009 in the different
methods presented in this study in order to compare them with the flood frequency map from
Padovani (2010), WaterMAP and the floodplains delimitations from GFPLAINS250m.

372

373 As seen in the first overview of the spectral indexes, the NDMI index is strongly influenced 374 by the vegetation which creates a bias for the detection of flooded areas. For the other 375 estimation methods, the results are more coherent with the flood frequency map from 376 Padovani (2010) and WaterMAP although WaterMAP seems to consider only the most 377 flooded area of the Pantanal. Except for the NDMI-based method, the large rivers such as the 378 Main Paraguay River at the North and South of the Pantanal, the São Lourenço river at the 379 northeast and the Taquari river at the East of the Pantanal are clearly visible in the different 380 flood detection methods. All the results are also coherent with the GFPLAINS250m 381 floodplains delimitation which is based on a DEM. The only exception is the central region 382 of the Pantanal, the Taquari Megafan, which may be related to local changes in the orography 383 (Assine, 2005).

384 **3.c) EXPLORATION OF A CASE STUDY**

The simple flood detection methods presented previously may have a large variety of applications. This subsection aims to illustrate their potential by using the mNDWI-based flood detection method and the NDVI index to explore the evolution of the extent of the floods along the years. The floods are evaluated during the month of march which is one of the most flooded months for the Pantanal. The images chosen have a cloud cover lower than

390 2% following the quality flag of MODIS. Three dates have been selected to perform this 391 study: 21/03/2004 (t0), 22/03/2007(t1), 06/03/2021 (t2). t0 (respectively t1) corresponds to 392 the year of lower maximum (respectively higher maximum) flood extent over the 2002 and 393 2010 period. t2 has been chosen in order to compare the two previous dates to the actual 394 situation which corresponds to drier conditions and with the vegetation cover affected by 395 important wildfires during the 2020 dry season.

Meteoro logica

396

397 Figure 10 shows the NDVI index (Fig. 10.a) for t0 over the Pantanal as well as the difference 398 of NDVI between t1 and t0 (Fig. 10.c) and between t2 and t0 (Fig. 10.c). Figure 10.d-f shows 399 the flooded area estimated with the mNDWI based method for the three dates. Comparing 400 the flooded area in t0 and t1, the floods in t1 are much more extended but they show similar 401 patterns. The regions where the flood became more important in t1 are the northwest and 402 central Pantanal. Some flooded areas also appear in the South of the Pantanal. The vegetation 403 seems to be reduced over some of the flooded area which may be related to the floods 404 replacing the vegetation or at least reducing the NDVI. However, the NDVI increases around 405 the shape of the floodplains in t1 compared to t0. A larger extent of flooded area reduces 406 locally the NDVI while the NDVI increases at its border due to the higher water availability. 407

408 In t2, the floods are at their minimal extent and are principally around the Paraguay river and 409 over the Taquari Megafan in the central region of the Pantanal. The northwest region has 410 almost no floods in t2 but has increased NDVI compared to t0. This means that there is water 411 allowing for the development of the vegetation but there is not enough water so it can be 412 considered as flooded. The NDVI is lower in t2 compared to t0 over the regions with higher 413 values of NDVI in t0 which may be related to the wildfire. It should also be noted that there 414 is an increase of the NDVI values compared to t0 over the NorthEast of the Pantanal. This 415 region is not usually flooded so this may be more related to the impact of the local 416 precipitation on the vegetation during the wet season.

417 4) DISCUSSION AND CONCLUSION

418 The estimation of the flooded area over large floodplains is a difficult task. The satellite 419 products may be precious tools. This paper explored different methods to estimate the 420 flooded area using the surface reflection from optical remote sensing products. The water-421 related information is extracted by using different spectral indexes related to the presence of 422 water content and vegetation. Then, different methods are developed using directly the 423 spectral indexes to determine the presence of water: threshold-based methods and 424 unsupervised classification to use the information from different spectral indexes at the same 425 time. The different methods evaluated were coherent with the previous works although there 426 is some delay between the temporal evolution of the estimated flood area and the river height 427 at Ladário. The NDMI index has an issue to represent the flooded area as it is influenced by 428 the vegetation during the wet period. However, considering the vegetation through the 429 NDMI-NDVI index seems to improve the representation of the flooded area. The spatial map 430 of the flooded area represents well the known hydrological features of the Pantanal. It should 431 be noted that the threshold based methods have lower computational costs for similar results 432 but the unsupervised classification methods can bring extra information.

433

434 The methods of flood detection presented in this study are simple methods which are based 435 on spectral index and do not require important preprocessing. They may be divided into two 436 categories: the threshold based methods on the one hand and the PCA based and k-means 437 methods on the other hand. The threshold based methods consist in applying a threshold to 438 the spectral indexes to detect the flooded area. This threshold can be determined in 439 comparison with other data which gives an indication either on the flooded area or on the 440 spatial extent of the floods. Different thresholds can be determined depending on the 441 sensibility expected for its use. The PCA and k-means methods use unsupervised 442 classification tools applied to a combination of the spectral indexes related to the presence of 443 water. For the PCA method, the method consists in identifying the dimension related to the 444 presence of water to calibrate and apply a threshold to this dimension. For the k-means, it 445 consists in identifying the clusters which correspond to the flooded area.

Meteoro logica

447 The advantage of all the above methods is that they can be easily applicable if the user has 448 some observational data to establish a threshold. Then, it is possible to calculate other spectral 449 indexes corresponding to other processes using the same optical satellite data to obtain a 450 global panorama of the hydrological processes over a certain region quite easily with a 451 reduced pre-processing. Nevertheless, these methods also present some disadvantages. The 452 main disadvantage is related to the presence of cloud cover in optical satellite images which 453 requires the filter of images containing clouds and, thus, may reduce the quantity of images 454 available. Another disadvantage is the fact that the spectral indexes may be affected by other 455 processes which impact the presence of water without being related to floods such as it may 456 be the case with the presence of lush vegetation.

457

458 Different solutions can be considered in order to face the issues presented previously 459 although this may involve more sophisticated methods. Concerning the cloud cover, the 460 combination of optical and SAR satellite data have been proven to improve the flood 461 detection being able to solve both cloud cover issue for the optical satellite and noise from 462 the SAR data (Prigent et al., 2020; Niedermeier et al., 2005; Inglada et al., 2016). Concerning 463 the interaction of other processes with the flood detection when using optical satellite data, 464 there are other methods that can be considered. The simpler process consists of developing 465 customized spectral indexes using a linear combination of the spectral bands in order to better 466 differentiate the vegetation from the flooded water such as it is done in other application such 467 as the Floating Algae Index (FAI) (Dogliotti et al., 2018) used to differentiate the presence 468 of algae in the water. Another option is, instead of evaluating the presence of flood over each 469 pixel individually, to consider the pixels by group of pixels such as it can be done with the 470 Object Based Image Analysis (Blaschke et al., 2014). This may help to better determine if 471 the pixels in an object are flooded by using (1) the distribution of the reflection of the pixels 472 composing each group and (2) the shape of the object (Louzada et al., 2020). The flood 473 detection can also be improved by using additional ancillary data about the local orography 474 using Digital Elevation Models. Finally, some more advanced methods of machine learning 475 classification can be used but they require more precise information on the pixels which are

476 flooded in order to fit the model. Unfortunately, this type of information is not always477 available.

478

479 Finally, we would like to emphasize that the difficulty to detect the flooded vegetation also

480 lies in the difficulty to define a limit to qualify whether a pixel is flooded or whether it is just

481 a pixel representing a moist soil.

ACKNOWLEDGEMENTS: We would like to gratefully acknowledge the support of the
Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina (PICTs
2017-1406, 2018-02511); the Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET), Argentina (PIP 11220200102141CO); the French-Argentina project ECOSSud 2018 co-financed by the Ministerio de Ciencia, Tecnología e Innovación (MINCyT),
Argentina and the Université Sorbonne Paris Nord, Francia (ECOS-A18D04); and the French
National LEFE program (Les Enveloppes Fluides et l'Environnement; LEFE 12962).

489

490 **REFERENCIAS**

- 491 Acharya, T.D., Subedi, A., Lee, D.H, 2018: Evaluation of Water Indices for Surface Water
- 492 Extraction in a Landsat 8 Scene of Nepal. Sensors, 18, 2580. doi:10.3390/s18082580
- 493
- 494 Alho, C.J.R., 2005: The Pantanal. In L. Fraser & P. Keddy (Eds.), The World's Largest

495 Wetlands: Ecology and Conservation, Cambridge University Press, pp. 203-271.
496 doi:10.1017/CBO9780511542091.008

- 497
- 498 Assine, M.L., 2005: River avulsions on the Taquari megafan, Pantanal wetland, Brazil.

499 Geomorphology, 70(3-4), pp. 357-371. doi:10.1016/j.geomorph.2005.02.013

- 500
- 501 Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., van der
- 502 Meer, F., van der Werff, H., van Coillie, F, Tiede, D., 2014: Geographic Object-Based Image
- 503 Analysis Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote

504	Sensing, 87, pp. 180-191. doi:10.1016/j.isprsjprs.2013.09.014
505	
506	Boschetti M., Nutini F., Manfron G., Brivio P.A., Nelson A., 2014: Comparative Analysis of
507	Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water
508	in Flooded Rice Cropping Systems. PLoS ONE 9, 2. doi:10.1371/journal.pone.0088741
509	
510	Dadson, S. J., Ashpole, I., Harris, P., Davies, H. N., Clark, D. B., Blyth, E., Taylor, C. M.,
511	2010. Wetland inundation dynamics in a model of land surface climate: Evaluation in the
512	Niger inland delta region. Journal of Geophysical Research Atmospheres, 115, D23114.
513	doi:10.1029/2010JD014474
514	
515	Dogliotti, A. I., Gossn, J. I., Vanhellemont, Q., Ruddick, K. G., 2018: Detecting and
516	quantifying a massive invasion of floating aquatic plants in the Río de la Plata turbid waters
517	using high spatial resolution ocean color imagery. Remote Sensing, 10, pp. 1140-1154.
518	doi:10.3390/rs10071140
519	
520	Fluet-Chouinard, E., Lehner, B., Rebelo, L. M., Papa, F., Hamilton, S. K., 2015:
521	Development of a global inundation map at high spatial resolution from topographic
522	downscaling of coarse-scale remote sensing data. Remote Sensing of Environment, 158, pp
523	348-361. doi:10.1016/j.rse.2014.10.015
524	
525	Gao, B. C., 1996: NDWI - A normalized difference water index for remote sensing of
526	vegetation liquid water from space. Remote Sensing of Environment, 58, 3, pp 257-266. doi:
527	10.1016/S0034-4257(96)00067-3
528	
529	Getirana, A., Kumar, S. V., Konapala, G., Ndehedehe, C. E., 2021: Impacts of Fully Coupling
530	Land Surface and Flood Models on the Simulation of Large Wetlands' Water Dynamics: The
531	Case of the Inner Niger Delta. Journal of Advances in Modeling Earth Systems, 13, 3.

Meteoro

logica

532 doi:10.1029/2021MS002463

534 Gond, V., Bartholomé, E., Ouattara, F., Nonguierma, A., Bado, L., 2004: Surveillance et

Meteoro logica

- 535 cartographie des plans d'eau et des zones humides et inondables en régions arides avec
- 536 l'instrument VEGETATION embarqué sur SPOT-4. International Journal of Remote
- 537 Sensing, 25, 5, pp. 987-1004. doi:10.1080/0143116031000139908
- 538
- 539 Hamilton, S. K., Sippel, S. J., Melack, J., 1996: Inundation patterns in the Pantanal Wetland
- 540 of South America determined from passive microwave remote sensing. Archiv für
- 541 Hydrobiologie, 137, 1, pp. 1-23. doi:10.1127/archiv-hydrobiol/137/1996/1
- 542
- 543 Hamilton, S. K., Sippel, S. J., Melack, J. M., 2002: Comparison of inundation patterns among
- 544 major South American floodplains. Journal of Geophysical Research Atmospheres, 107, 545 D20, pp. LBA 5-1-LBA 5-14. doi:10.1029/2000JD000306
- 546
- 547 Hu, C., 2009: A novel ocean color index to detect floating algae in the global oceans. Remote
- 548 Sensing of Environment, 113(10), 2118–2129. doi: 1016/J.RSE.2009.05.012
- 549
- 550 Inglada, J., Vincent, A., Arias, M., Marais-Sicre, C., 2016: Improved early crop type
- 551 identification by joint use of high temporal resolution sar and optical image time series.
- 552 Remote Sensing, 8, pp. 362-382. doi:10.3390/rs8050362
- 553
- 554 Jollife, I. T., Cadima, J., 2016: Principal component analysis: A review and recent 555 developments, 374, 2065. doi:10.1098/rsta.2015.0202
- 556
- 557 Junk, W. J., Bayley, P. B., Sparks, R. E., 1989: The flood pulse concept in river-floodplain
- 558 systems. D. P. Dodge [ed.] Proceedings of the International Large River Symposium. Can.
- 559 Spec. Publ. Fish. Aquat. Sci., 106, pp. 110–127.
- 560
- 561 Lloyd, S. P., 1982: Least Squares Quantization in PCM. IEEE Transactions on Information

- 562 Theory, 28, 2, pp. 129-137.
- 563
- 564 Louzada, R. O., Bergier, I., & Assine, M. L., 2020: Landscape changes in avulsive river

Meteoro logica

- systems: Case study of Taquari River on Brazilian Pantanal wetlands. Science of the Total
 Environment, 723, 138067. doi:10.1016/j.scitotenv.2020.138067
- 567
- 568 Nardi, F., Annis, A., Baldassarre, G. Di, Vivoni, E. R., Grimaldi, S., 2019: GFPLAIN250m,
- 569 a global high-resolution dataset of earth's floodplains. Scientific Data, 6, 180309.
- 570 doi:10.1038/sdata.2018.309
- 571
- 572 Niedermeier, A., Hoja, D., Lehner, S., 2005: Topography and morphodynamics in the 573 German Bight using SAR and optical remote sensing data. Ocean Dynamics, 55, pp. 100-
- 574 109. doi:10.1007/s10236-005-0114-2
- 575
- 576 Ogilvie, A., Belaud, G., Delenne, C., Bailly, J. S., Bader, J. C., Oleksiak, A., Ferry, L.,
- 577 Martin, D., 2015: Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS
- 578 optical data. Journal of Hydrology, 523, pp. 368-383. doi:10.1016/j.jhydrol.2015.01.036
- 579
- 580 Padovani, 2010: PhD thesis "Dinâmica Espaço-Temporal das Inundações do Pantanal".
- 581 Escola Superior de Agricultura Luiz de Queiroz, Centro de Energia Nuclear na Agricultura,
- 582 Universidade de São Paulo, pp. 175.
- 583 https://www.teses.usp.br/teses/disponiveis/91/91131/tde-14022011-170515/pt-br.php
- 584
- Pekel, J. F., Cottam, A., Gorelick, N., Belward, A. S., 2016: High-resolution mapping of
 global surface water and its long-term changes. Nature, 540, 418-422.
 doi:10.1038/nature20584
- 588
- 589 Pereira, G. H. D. A., Júnior, C. C., Fronza, G., Deppe, F. A. C., 2019: MULTITEMPORAL
- 590 ANALYSIS OF SAR IMAGES FOR DETECTION OF FLOODED AREAS IN

- 591 PANTANAL. Raega-O Espaço Geográfico em Análise, 46(3), 88-100.
 592 doi:10.5380/raega.v46i3.66988
- 593
- 594 Prigent, C., Jimenez, C., Bousquet, P. (2020). Satellite-Derived Global Surface Water Extent
- 595 and Dynamics Over the Last 25 Years (GIEMS-2). Journal of Geophysical Research:
- 596 Atmospheres, 125(3). doi:doi.org/10.1029/2019JD030711
- 597
- 598 Rouse, W., Haas, R. H., Deering, D. W., 1974: Monitoring vegetation systems in the Great
- 599 Plains with ERTS. Third Earth Resources Technology Satellite-1 Symposium- Volume I:
- 600 Technical Presentations. NASA SP-351, pp. 309.
- 601
- 602 Savtchenko, A., Ouzounov, D., Ahmad, S., Acker, J., Leptoukh, G., Koziana, J., Nickless,
- 603 D., 2004: Terra and Aqua MODIS products available from NASA GES DAAC. Advances in
- 604 Space Research, 34(4), 710-714. doi:10.1016/j.asr.2004.03.012
- 605
- 606 Schrapffer, A., Sörensson, A., Polcher, J., Fita, L., 2020: Benefits of representing floodplains
- 607 in a Land Surface Model: Pantanal simulated with ORCHIDEE CMIP6 version. Climate
- 608 Dynamics, 55, pp. 1303-1323. doi:10.1007/s00382-020-05324-0
- 609
- 610 Taylor, C. M., 2010. Feedbacks on convection from an African wetland. Geophysical
- 611 Research Letters, 37, 5. doi:10.1029/2009GL041652, 2010
- 612
- on der Meer, F. D., van der Werff, H. M., van Ruitenbeek, F. J., Hecker, C. A., Bakker, W.
- H., Noomen, M. F., van der Meijde, M., Carranza, E. J. M., de Smeth, J. B., Woldai, T., 2012:
- 615 Multi- and hyperspectral geologic remote sensing: A review, 14, 1, pp. 112-128.
- 616 doi:10.1016/j.jag.2011.08.002
- 617
- Vermote, E. F., Saleous, N. Z., 2006: Operational atmospheric correction of modis visible to
 middle infrared land surface data in the case of an infinite lambertian target. Earth Science

Meteoro logica

Artículo en edición

- 620 Satellite Remote Sensing: Science and Instruments. Springer, pp. 123-153. doi:10.1007/978-
- 621 3-540-37293-6_8
- 622
- 623 Verstraete, M. M., Pinty, B., 1996: Designing optimal spectral indexes for remote sensing
- applications. IEEE Transactions on Geoscience and Remote Sensing, 34, 5, pp. 1254-1265.
- 625 doi: 10.1109/36.536541
- 626
- 627 Xu, H., 2006: Modification of normalised difference water index (NDWI) to enhance open
- 628 water features in remotely sensed imagery. International Journal of Remote Sensing, 27, 14,
- 629 pp. 3025-3033. doi:10.1080/01431160600589179
- 630
- 631 Xue, J., Su, B., 2017: Significant remote sensing vegetation indices: A review of
- developments and applications. Journal of Sensors, 2017. doi:10.1155/2017/1353691
- 633

634 Figuras y Tablas

635

636

Figure 1: Localization and description of the Pantanal wetlands inside the Upper Paraguay
River Basin. The blue layer corresponds to the flood extent from WaterMap (Pekel et al.
2016; Source: EC JRC/Google).

643 Figure 2: Number of monthly available data for this MODIS product and number of dates

644 available without clouds between 2002 and 2004.

646

647 Figure 3: Results of the spectral indexes for two different dates: one during the dry period

648 and one during the wet period.

651 Figure 4: Distribution of the mNDWI / NDMI / NDVI values of the pixels.

652

653 Figure 5: Illustration of k-means model output for k = 6 for (a) the wet and (b) the dry

654 reference images and (c) distribution of the cluster in the (mNDWI / NDMI space).

656

657 Figure 6: Values for the second dimension of the PCA for the wet reference image.

660 Figure 7: Time series of Padovani (2010), the river height at Ladário and of the results from

- the threshold-based methods using (a) mNDWI, (b) NDMI and (c) NDMI-NDVI.
- 662

Meteoro logica

Artículo en edición

Figure 8: Time series of Padovani (2010), the river height at Ladário and of the results from the threshold-based methods using (a) the Principal Component Analysis (PCA) method and (b) the k-means algorithm with k = 6.

- 667
- 668

669Figure 9: Flood frequency between 2002 and 2009 obtained from the different methods

- 670 presented: 3 threshold-based methods using the (a) mNDWI, (b) NDMI and (d) NDMI-
- NDVI index and 2 unsupervised classification methods: (e) Principal Component Analysis
- and (f) k-means. Occurrence of flood from (c) Padovani (2010) and (g) WaterMAP (Pekel
- et al. 2016; Source: EC JRC/Google) between 1984 and 2015 and floodplains delimitation
- 674 from GFPLAINS250m (Nardi et al., 2019).
- 675

Meteoro logica

678 Figure 10: NDVI (a,b,c) and flood estimate (d,e,f) and for t0 (21/03/2004; a and d),

679 t1(22/03/2007; b and e) and t2 (06/03/2021; c and f).

680

681

Spectral Indexes	References	Specificity	
$mNDWI = \frac{-SWIR}{+SWIR}$	Xu (2006) Ogilvie et al. (2015)	Water detection	
$NDMI = \frac{NIR - SWIR}{NIR + SWIR}$	Ogilvie et al. (2015)	Water detection	
NDVI = NIR - N	Rouse et al. (1974)	Vegetation and water detection	
NDMI-NDVI	Gond et al. (2004) Boschetti et al. (2014)	Rice flood mapping, water bodies and wetland	

682

Table I: Spectral indexes considered in this study with some reference papers and thespecificity of these indexes.

Method	Threshold	
Threshold-based mNDWI	-0,465	
Threshold-based NDMI	0,32	
Threshold-based NDMI-NDVI	-0,45	
K-Means	Cluster 4 and 5	
PCA	0,09	

686

687 Table II: Methods and their corresponding threshold values.

Meteoro logica

Artículo en edición

Method	PBIAS	RMSE	Correlation
mNDWI	-12,74	4.894	0,8
NDMI	-23,83	6.839	0,81
NDMI-NDVI	9,89	5.243	0,82
K-Means	11,46	5.119	0,77
PCA	-9,83	4.871	0,78

689

690 Table III: Resume of the statistics (Percentage bias - PBIAS, Root-Mean Square Error -

691 RMSE, Correlation) comparing Padovani (2010) estimate with the different methods:

692 threshold-based applied to mNDWI, NDMI and NDMI-NDVI, Principal Component

693 Analysis (PCA) method and k-means with k = 6. The correlations are significant with a

694 significance level of 99 %.