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ABSTRACT 18 

 19 

Tropical floodplains, such as Pantanal in Central South America, are important features for 20 

land-atmosphere interactions. Schemes to account for floodplains should therefore be 21 

included in Earth System Models, but this requires observations of flooded area for 22 

validation. Satellite data is a possible solution to estimate the flooded area but it is important 23 

to evaluate the different flood detection algorithms available in order to use the most efficient 24 

for the region. This work explores different methods to estimate the flooded area from the 25 

MODIS MOD09A1 satellite surface reflectance product using spectral indexes (mNDWI, 26 

NDMI, NDMI-NDVI) to detect the presence of water. We include the traditional threshold-27 

based methods but also some unsupervised classification methods such as the k-means and 28 

the Principal Component Analysis applied on the water-related spectral indexes. The 29 
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calibration and validation of these methods are based on the hydrological knowledge of the 30 

region, coming from land surface models, river discharge observation and from previous 31 

satellite estimations of the flooded area. The NDMI index seems too sensible to the 32 

vegetation which leads to error in the estimation of the flooded area. The other methods were 33 

spatially and temporally consistent with previous studies over the Pantanal. 34 

 35 

Key Words: Floodplains, flood detection, remote sensing, Pantanal, MODIS. 36 

 37 

RESUMEN 38 

 39 

Las llanuras de inundaciones tropicales, como el Pantanal en Suramérica Central, son 40 

importantes para las interacciones suelo-atmósfera. Por lo tanto, los esquemas que 41 

representan las llanuras de inundación tienen que ser incluidos en los Modelos del Sistema 42 

Tierra, pero eso requiere observaciones del área inundada para validación. Los datos 43 

satelitales son una posible solución para estimar la superficie inundada, pero es importante 44 

evaluar los diferentes algoritmos disponibles para utilizar el más eficiente para cada región 45 

de interés. Este trabajo explora diferentes métodos para estimar la superficie inundada con el 46 

producto de reflectancia de la superficie MODIS con el uso de índices espectrales (mNDWI, 47 

NDMI, NDMI-NDVI) para detectar la presencia de agua sobre Pantanal. Incluimos los 48 

métodos más comunes basados en el uso de umbrales y también algunos métodos de 49 

supervisión no clasificada como los k-means y el Análisis de Componentes principales 50 

aplicados a los índices espectrales relacionados con la presencia de agua. La calibración y la 51 

validación de estos métodos está basado en los conocimientos hidrológicos de la región, 52 

proviniendo de modelos de superficie, observaciones de caudal y de estimaciones de la 53 

superficie inundada por satélite realizada en trabajos anteriores. El índice NDMI parece 54 

demasiado sensible a la vegetación lo que lleva a errores en la estimación de la superficie 55 

inundada. Los otros métodos son espacial y temporalmente consistente con estudios previos 56 

sobre el Pantanal. 57 

 58 
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Palabras clave: Llanuras de inundaciones, Detección de inundaciones, Teledetección, 59 

Pantanal, MODIS. 60 

 61 

1) INTRODUCTION 62 

The floodplains are wetlands which are temporarily or permanently flooded and where there 63 

are strong interactions between the different terrestrial hydrological processes such as river 64 

discharge, the evapotranspiration from plants, the evaporation from open water surfaces and 65 

the vertical movement of water between the surface soil and the saturated zone. These large 66 

floodplains are places of rich biodiversity and provide important ecosystem services such as 67 

water purification, river stream regulation and carbon sequestration. The monitoring and 68 

improved comprehension of these regions are vital for their revalorization and conservation. 69 

Remote sensing products are powerful tools to monitor the spatiotemporal evolution of these 70 

extensive floodplains with a reasonable frequency. Satellite estimations of the flooded areas 71 

are also necessary to develop a correct representation of the hydrology of these regions in 72 

Land Surface Models and Earth System Models. 73 

 74 

The periodic flooding of the floodplains related to the overflow of the river is fundamental 75 

for the local ecosystem as it is driving the lateral exchange of water and nutrients in the river 76 

floodplains system (cf. flood pulse concept, Junk et al., 1989). These exchanges are one of 77 

the reasons why the floodplains are very productive ecosystems and considered as 78 

biodiversity hotspots. However, large floodplains are also regions where the in-situ 79 

observations are not sufficient to reconstruct their full dynamics, as opposed to smaller and 80 

more homogeneous wetlands and to unvegetated regions which can be more easily monitored 81 

and where the estimation can be carried out more directly by spectral indices. Thus it is 82 

difficult to estimate the temporal variability and map the spatial variability of the floods over 83 

large floodplains. 84 

 85 

Large tropical floodplains, such as the Pantanal in central South America, are regions of 86 
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strong land-atmosphere interactions due to due to a high level of evaporation in relation with 87 

the presence of open-water surfaces and of transpiration in relation with the increased soil 88 

moisture (Schrapffer et al., 2020). This induces strong gradient of land-atmosphere fluxes 89 

and temperature between the floodplains and the neighbouring regions. This is why the 90 

floodplains processes tend to be ever more integrated in Land Surface Models (Schrapffer et 91 

al., 2020; Dadson et al., 2010; Getirana et al., 2021) because this improves the representation 92 

of the hydrological cycle and it will change the sensible and latent fluxes which may have an 93 

impact on atmospheric conditions and, thus on the regional precipitation (Taylor, 2010). 94 

These are important advances regarding the growing interest of coupled simulations to study 95 

the land-atmosphere interactions. In order to be able to calibrate and evaluate the floodplains 96 

scheme in Land Surface Models, the estimates of the temporal and the mapping of the spatial 97 

evolution of the flooded surfaces are crucial.  98 

 99 

Remote sensing has proven to be a helpful tool to estimate large-scale land processes and 100 

may be helpful to estimate the flooded area over large tropical floodplains (Padovani, 2010; 101 

Ogilvie et al., 2015). There are two types of sensors which can be used to estimate the flooded 102 

areas: the Optical and Synthetic Aperture Radar (SAR) sensors. SAR data presents some 103 

advantages to detect the flooded area as it is not affected by clouds because it uses the 104 

microwave bands and because it can provide data during both day and night (Pereira et al., 105 

2019). Despite this, SAR data may be affected by speckle noise (Inglada et al., 2016) and 106 

may be largely impacted by confounding effects associated with the surface conditions. 107 

Moreover, the processing of this type of data is more complex compared to optical data 108 

(Niedermeier et al., 2005). On the other hand, optical data are relatively easy to manipulate 109 

and allow to obtain both the flooded area and the presence of vegetation or other features in 110 

a relatively simple way. Therefore, in this work, we chose to employ optical data. There are 111 

two major difficulties to handle in this work: (1) the relatively large extension of the region 112 

and (2) the issue of the cloud cover over such a large region. The first point can be managed 113 

by using a satellite product with a lower resolution such as a MODIS product. For the second 114 

point, a post-processed product which uses a lower temporal resolution can be used. Some 115 
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of these lower temporal resolution products are created by merging the different images 116 

available to produce images with the lowest cloudiness possible. There are two similar 117 

MODIS products which correspond to this type of post processing: MOD09A1 and 118 

MYD09A1. 119 

 120 

Traditional methods used to estimate the extension of flooded surfaces rely on spectral 121 

indices and thresholds (Ogilvie et al., 2015). Some spectral indices may highlight the 122 

presence of water by higher values. However, some other land features may generate noise 123 

and make it difficult to directly detect the flooded area using a threshold. For example, the 124 

estimation of flooded area over regions containing lush vegetation may be confounded with 125 

the vegetation water content due to the large annual variability of water content related to the 126 

flood pulse.  127 

 128 

This is why, although the presence of water may be overestimated by higher values in some 129 

spectral indices, some land features such as the vegetation might generate noise and make it 130 

difficult to directly detect the flooded area using a threshold. Thus more sophisticated 131 

methods may lead to an improvement of the estimate. The spectral indices considered in this 132 

study contain information about the water content and the status of the vegetation such as the 133 

modified Normalized Water Index (mNDWI), the Normalized Difference Moisture Index 134 

(NDMI) and Normalized Difference Vegetation Index (NDVI). 135 

 136 

This study aims to compare the use of different methods based on spectral indexes to estimate 137 

the flooded area and to overcome the difficulties of estimating the flooded surface over large 138 

and complex regions such as Pantanal. This is done by comparing different traditional 139 

approaches: (1) using the classical approach of applying a threshold over spectral indexes 140 

and (2) using unsupervised classification methods such as the k-means and the Principal 141 

Component Analysis (PCA). We aim at an optimized method that is both as robust and as 142 

simple as possible. The estimates obtained are then validated by a previous satellite estimate 143 

made by Padovani (2010) and by the river height at Ladário station. 144 



Artículo en edición                                                                                                             

 

6 
 

 145 

This paper is organized as follows. Section 2 contains the Methodology and Dataset used. 146 

Section 3 contains the results and the evaluation of the temporal and spatial estimation of the 147 

flooded area by the different methods considered. Section 4 contains the discussion and 148 

conclusion. 149 

2) METHODOLOGY AND DATASETS 150 

2.a) REGION OF INTEREST: THE PANTANAL 151 

The Pantanal, the world’s largest floodplains, has an extension of 150.000 km2 and is located 152 

in the tropical region of southwestern Brazil (see Figure 1). The flat lands of Pantanal range 153 

between 80 and 150 m.a.s.l. of altitude while the surrounding mountain ranges of the 154 

Cerrados from its north/northeast to its southeast ranges between 200 and 1.400 m.a.s.l. 155 

(Alho, 2005). It has a regular annual cycle of flooding driven by the precipitation over the 156 

Cerrados during the rainy season (December to February). Due to the flat slopes of the 157 

Pantanal, it takes between 3 and 5 months for the water flowing from the Cerrados to cross 158 

the Pantanal. This excess of water flowing into Pantanal through the river system and slowed 159 

down by the topography generates important floods. The climatological season of floods 160 

occurs between February and May (Penatti et al., 2015). 161 

2.b) MODIS data: MOD09A1 162 

The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra MOD09A1 and 163 

MYD09A1 products have been chosen to perform this study for various reasons. First, they 164 

have a resolution of 500m which is higher than some other surface reflectance products such 165 

as Landsat (30 m resolution) but it is sufficient and more manageable as we are dealing with 166 

an extensive region. The MOD09A1 (MYD09A1) product is constructed from an 8-day 167 

composite period and gives an estimate of the surface spectral reflectance for the 7 first bands 168 

of Terra (Aqua) MODIS with corrected atmospheric effects (gases, aerosols, Rayleigh 169 

scattering). This correction consists in (1) an adjustment to include the effect of the solar 170 
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zenith angle in order to obtain the top-of-atmosphere value and (2) the correction of the error 171 

related to the atmospheric scattering and absorption due to the presence of gases and aerosols 172 

in the atmosphere and to the spherical albedo (Vermote et al., 2006). The MODIS satellites 173 

provide data for each location each 1-2 days. This permits creating a composite image, 174 

selecting for each 8-days period the highest quality data for each pixel (lower view angle, 175 

absence of clouds, clouds shadow and aerosols) to obtain the MOD09A1 and MYD09A1 176 

products. Two tiles were considered to fully include the Pantanal: h12v10 and h12v11. Both 177 

products have been retrieved from the NASA Earth Data Search (https://search.earth 178 

data.nasa.gov). 179 

 180 

The flooding cycle of the Pantanal is annual, thus a temporal resolution from a couple of 181 

weeks to a month is acceptable. Thus, both products can be used for this purpose. Although 182 

this product intends to avoid clouds and other inconveniences, during the rainy season the 183 

images can still be affected by the presence of clouds due to an excessive cloud coverage 184 

during the rainy season. The presence of clouds has been assessed in two steps. Firstly, the 185 

Quality Bit Flags of the MODIS products over the Pantanal were used to obtain the mask of 186 

the Pantanal which is not cloudfree nor covered by clouds shadows. For values of cloud cover 187 

fraction over the Pantanal higher than 5%, the image was discarded. After that, all the images 188 

retained were checked visually to verify that they didn’t contain coarse cloud features over 189 

the Pantanal that remained undetected by the Quality Bit Flags. Between 2002 and 2021, 190 

54% of the images available were considered cloudless over Pantanal in MOD09A1 and 35% 191 

for MYD09A1. The dates available without clouds for MOD09A1 and for MYD09A1 have 192 

been compared. It should be highlighted that the major differences between MOD09A1 and 193 

MYD09A1 are the availability of data as MOD09A1 was launched in 2000, two years before 194 

MYD09A1 (Savtchenko et al., 2004). During the period they have in common, MOD09A1 195 

has 140 cloudless dates which are considered as cloudy in MYD09A1 while MYD09A1 only 196 

has 7 cloudless images which are considered as cloudy in MOD09A1. These 7 images 197 

represent the dry season, a period of lower cloudiness and thus of major availability of images 198 

also in MOD09A1. For these reasons, only the product MOD09A1 has been retained 199 
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although the use of both products MYD09A1 may be considered to complete the data in 200 

further studies. All the MOD09A1 cloudless images have been confirmed as such by the 201 

visual check, while MYD09A1 was not checked visually since this product was not used for 202 

this study. 203 

 204 

The different methods of flood detection presented in this study have been calibrated over 205 

the 2002-2004 period. Figure 2 represents for each month the total number of MODIS 206 

MOD09A1 images available and the quantity of exploitable images, i.e. cloudless. As 207 

expected the number of cloudless images is strongly affected by the wet season (November 208 

to March). 209 

2.c) SPECTRAL INDEXES 210 

The Spectral Indexes have two main objectives: (1) to isolate some specific land features 211 

signals such as signals related to the vegetation (Xue and Su, 2017), the presence of water 212 

(Acharya et al., 2018) or the soil composition (van der Meer et al., 2012); while (2) they are 213 

insensitive to other perturbing signals (Verstraete and Pinty, 1996).  214 

 215 

The spectral indices presented here are based on normalized differences between reflectance 216 

at different wavelengths. The NDVI emphasizes the presence of vegetation while the rest of 217 

the indices try to underline the presence of water bodies. All these indexes are resumed in 218 

Table I. 219 

 220 

The main spectral indexes are constructed based on some basic processes: the vegetation 221 

strongly reflects the Near InfraRed (NIR) and the Green but has a very low reflectance in the 222 

Red wavelength. The ShortWave InfraRed (SWIR) is very sensitive to the water content and 223 

in particular to the vegetation water content.  224 

 225 

These indexes are shown in Figure 3 over the Pantanal region for two different dates: one 226 

during the dry season (21st August 2002) and one during the wet season (15th April 2003). 227 
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The NDMI gives a good indication over the flooded vegetation may be falsely detecting 228 

highly vegetated regions as flooded. To combine the information contained in NDMI with 229 

NDVI seems a possible solution to better distinguish between these two land covers (cf. 230 

NDMI-NDVI index in Figure 3.d and Figure 3.h). 231 

 232 

2.d) FLOODED AREA DETECTION 233 

Two methods are tested in this study: (1) a threshold-based method using the indices that 234 

seemed to better represent the presence of water (mNDWI; NDMI; NDMI-NDVI) and (2) 235 

using two different unsupervised classification methods using 3 indices (mNDWI, NDMI 236 

and NDVI).  237 

 238 

The first method of unsupervised classification is the k-means (Lloyd, 1982) which is a 239 

clustering method to regroup the data into different categories. The number of categories or 240 

clusters is given by the parameter “k”. number of clusters. Each cluster is defined by its 241 

centroid and the membership of each data point to a certain cluster will be determined 242 

according to the nearest centroid. The algorithm tries to minimize the total distance between 243 

the centroids and the data. The election of the k-value depends on the problem that is being 244 

clusterized. Different values have been evaluated. For k-value under 6, the output was not 245 

stable while k-values higher than 6 added more complexity to the description of the data 246 

which wasn’t necessary adding value to the discrimination between flooded and not flooded 247 

pixels. Thus, the k-value chosen for this study is 6. 248 

 249 

The second unsupervised classification method uses the Principal Component Analysis (PCA 250 

– Jollife and Cadima, 2016) method which finds an orthogonal projection that best fits the 251 

data and allows to reduce the number of dimensions. As the data has 3 dimensions (due to 252 

the 3 indexes considered), the maximal number of dimensions that can be considered for the 253 

PCA is 3. The number of dimensions considered in this study is set at 2. The second 254 
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dimension refers to the spatial structure of the flooded area. This is not the case for the first 255 

dimension of the PCA which seems to be representing other processes such as the vegetation. 256 

Higher values in the second dimension of the PCA corresponds with areas with higher values 257 

of mNDWI, NDMI and to the spatial structure of the floods (cf. Figure 1). The value of the 258 

pixels over this axis resumed the flood related information from the 3 indexes. Then, a 259 

threshold has to be established to classify each pixel into the flooded / not flooded categories. 260 

 261 

2.e) UNSUPERVISED CLASSIFICATION INPUT 262 

In order to have a single model that would take into account the variability of the vegetation 263 

along the year and that would underline the flood processes, the sample input data to generate 264 

the PCA and the k-means model have been randomly selected from two images. As the 265 

Pantanal has a very marked wet and dry season, one of these images corresponds to the dry 266 

season (from June to September) and the other one at the end of the wet season (From 267 

November to March) which also corresponds to the climatological season of floods. The 268 

images chosen correspond to the dates that were used to illustrate the spectral indexes in 269 

Figure 3: the 21st of August 2002 for the dry season and the 15th of April 2003 for the wet 270 

season. A total of 10000 pixels per image has been used. 271 

 272 

The PCA and k-means processes are quite sensible to the input. In this case, the objective is 273 

to represent the variability of the flooded area. The data is mainly composed of not flooded 274 

pixels as demonstrated by the distribution in Figure 4 whose maximum is located in the low-275 

NDMI / low-mNDWI region. For this reason, although the 10000 pixels per image were 276 

randomly selected, pixels with higher values of mNDWI have been favored. Another filter 277 

has been applied to avoid selecting the outlier which were mainly pixels with extremely low 278 

NDMI value (cf. Figure 4). 279 

 280 

The k-means clustering with k=6 is shown in Figure 5. In the spatial location of the clusters 281 
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in the (mNDWI, NDMI) space (Figure 5.c), the cluster number 0 to 3 have a low mNDWI 282 

value, reasons why they are considered as not flooded and their NDMI index value is growing 283 

from the cluster 0 to the cluster 3. Looking at the difference between the k-means 284 

representation of the dry season image (Figure 5.b) and the wet season image (Figure 5.a) 285 

maps, we can see that they may represent different conditions of vegetation and that low 286 

vegetation regions in the dry season image become high vegetation region during the wet 287 

season. Pixels in the clusters 4 and 5 have a higher mNDWI value and can be considered as 288 

flooded. The pixels in cluster 5 include the pixels with maximal mNDWI values, thus we can 289 

consider that cluster 5 represents the open water pixels and pixel 4 the flooded vegetation. 290 

 291 

The second dimension of the PCA is shown in Figure 6. We can deduce that higher values 292 

along this dimension represent the flooded pixels. 293 

 294 

2.f) VALIDATION DATA 295 

Ground-based observations of the flooded area over such a large area as the Pantanal are 296 

scarce. The validation of a flood estimate method may rely on two aspects: (1) the knowledge 297 

of the local hydrological network and the characteristics of the regions; (2) the comparison 298 

with previous satellite estimates. 299 

 300 

Hamilton et al. (1996) is a reference for the flooded area estimate over the region. It found a 301 

relationship between the flooded area over the Pantanal estimated between 1979 and 1987 302 

and the river gauge at the Ladário station obtained from the Brazilian National Water Agency 303 

(Agência Nacional de Águas - ANA). The flooded area has been estimated using the 304 

brightness temperature from a satellite passive microwave sensor. Hamilton et al. (2002) 305 

further extended this relationship from 1900 to 2000 to obtain an estimation of the evolution 306 

of the flooded area. Although these results are not available for the period of availability of 307 

MODIS, they point out that the river gauge data from the Ladário station (see Figure 1) can 308 
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be used to assess the flooded area as these data are strongly correlated. 309 

 310 

We will also for comparison use the estimation of (Padovani, 2010) which has been validated 311 

in comparison with Hamilton et al. (2002). Padovani (2010) applied a Linear Model of 312 

Spectral Mixture (LMSM) to MODIS MOD13Q1 images to estimate the temporal and map 313 

the spatial evolution of the flooded area over the Pantanal. The MOD13Q1 product includes 314 

vegetation description (NDVI and EVI indexes) and the corresponding Red, Near Infrared, 315 

blue and Mid-Infrared bands from MODIS. A 16-days composite image is created by 316 

selecting the highest quality data for each pixel (lower view angle, absence of clouds) and by 317 

favoring higher values of NDVI/EVI indexes. Thus, although this product is also constructed 318 

from MODIS data, it differs from MOD09A1 because of its focus on vegetation processes 319 

and because of the lower temporal resolution (images each 16 days instead of 8). The method 320 

developed by Padovani (2010) uses a single image (May 25th 2007) to calibrate by finding 321 

a linear relationship between the reflection at different wavelengths available and the soil, 322 

vegetation and water cover. By applying this relationship to the other images, it allows 323 

estimating the fraction of soil, vegetation and water cover. The flooded area is then 324 

determined by applying a threshold on the water cover fraction.  325 

 326 

Other types of datasets have been considered for the spatial validation of the methods 327 

presented in this study such as WaterMAP (Pekel et al., 2016) and GFPLAINS250m. 328 

WaterMAP is a global dataset available between 1984 and 2015 which contains the monthly 329 

estimate of the surface water location constructed from optical sensors (Landsat 5 TM; 330 

Landsat 7 ETM+ and Landsat 8 OLI), regional datasets and from inventories. 331 

GFPLAINS250m is a 250m resolution dataset drawing the delimitations of what can be 332 

considered as floodplains based on Digital Elevation Model datasets. 333 

 334 

The different thresholds required were calibrated with the Padovani (2010) time series for 335 

the period 2002-2004. The respective threshold values for the different methods are resumed 336 

in Table II. 337 
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 338 

The mean flood frequency from Padovani (2010) will also be used as a comparison. 339 

However, as it improves the readability of the map, the modification of the flood frequency 340 

map from Padovani (2010) presented in Fluet-Chouinard et al., (2015) can also be used to 341 

assess the spatial representation of the floodplains in the different methods used in this work. 342 

3) RESULTS 343 

The different satellite estimate methods that have been described in Section 2 and calibrated 344 

over the 2002-2004 period have been applied to MODIS MOD09A1 between 2002 and 2009. 345 

Their temporal evolution and spatial representation are assessed in comparison with 346 

Padovani (2010). 347 

3.a) EVALUATION OF THE TEMPORAL EVOLUTION 348 

The temporal evolution of the flooded area estimated over the Pantanal by the threshold-349 

based methods are presented in Figure 7 and Figure 8 shows the evaluation of the results for 350 

the unsupervised classification methods. The comparison of the different estimates with 351 

Padovani (2010) is summarized through some basic comparative statistical indexes in Table 352 

III (correlation, root mean square error - RMSE - and percentage bias – PBIAS). 353 

 354 

Except the NDMI index, the different methods are coherent with the study of Padovani 355 

(2010). Among them, the PCA and NDMI-NDVI have higher values of flooded area while 356 

the mNDWI index and the k-means have lower values of the flooded area.  357 

 358 

The NDMI-based estimation is less correlated than the other methods with Padovani but this 359 

correlation increases when integrating the information from the NDVI index (Figure 7.c). 360 

This difference may be related to the influence of the vegetation in the NDMI index. 361 

 362 

The river stage at Ladário is delayed compared to both Padovani (2010) and the methods 363 
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evaluated although the amplitude of the river gauge and the estimated flooded area are 364 

similar. Following the Hamilton et al. (1996) estimation of the flooded area, the river stage 365 

at Ladário should be strongly correlated. Further analysis should be performed to understand 366 

these differences. 367 

3.b) EVALUATION OF THE SPATIAL EVOLUTION 368 

Figure 9 shows the comparison of flood frequency between 2002 and 2009 in the different 369 

methods presented in this study in order to compare them with the flood frequency map from 370 

Padovani (2010), WaterMAP and the floodplains delimitations from GFPLAINS250m. 371 

 372 

As seen in the first overview of the spectral indexes, the NDMI index is strongly influenced 373 

by the vegetation which creates a bias for the detection of flooded areas. For the other 374 

estimation methods, the results are more coherent with the flood frequency map from 375 

Padovani (2010) and WaterMAP although WaterMAP seems to consider only the most 376 

flooded area of the Pantanal. Except for the NDMI-based method, the large rivers such as the 377 

Main Paraguay River at the North and South of the Pantanal, the São Lourenço river at the 378 

northeast and the Taquari river at the East of the Pantanal are clearly visible in the different 379 

flood detection methods. All the results are also coherent with the GFPLAINS250m 380 

floodplains delimitation which is based on a DEM. The only exception is the central region 381 

of the Pantanal, the Taquari Megafan, which may be related to local changes in the orography 382 

(Assine, 2005). 383 

3.c) EXPLORATION OF A CASE STUDY 384 

The simple flood detection methods presented previously may have a large variety of 385 

applications. This subsection aims to illustrate their potential by using the mNDWI-based 386 

flood detection method and the NDVI index to explore the evolution of the extent of the 387 

floods along the years. The floods are evaluated during the month of march which is one of 388 

the most flooded months for the Pantanal. The images chosen have a cloud cover lower than 389 
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2% following the quality flag of MODIS. Three dates have been selected to perform this 390 

study: 21/03/2004 (t0), 22/03/2007(t1), 06/03/2021 (t2). t0 (respectively t1) corresponds to 391 

the year of lower maximum (respectively higher maximum) flood extent over the 2002 and 392 

2010 period. t2 has been chosen in order to compare the two previous dates to the actual 393 

situation which corresponds to drier conditions and with the vegetation cover affected by 394 

important wildfires during the 2020 dry season.  395 

 396 

Figure 10 shows the NDVI index (Fig. 10.a) for t0 over the Pantanal as well as the difference 397 

of NDVI between t1 and t0 (Fig. 10.c) and between t2 and t0 (Fig. 10.c). Figure 10.d-f shows 398 

the flooded area estimated with the mNDWI based method for the three dates. Comparing 399 

the flooded area in t0 and t1, the floods in t1 are much more extended but they show similar 400 

patterns. The regions where the flood became more important in t1 are the northwest and 401 

central Pantanal. Some flooded areas also appear in the South of the Pantanal. The vegetation 402 

seems to be reduced over some of the flooded area which may be related to the floods 403 

replacing the vegetation or at least reducing the NDVI. However, the NDVI increases around 404 

the shape of the floodplains in t1 compared to t0. A larger extent of flooded area reduces 405 

locally the NDVI while the NDVI increases at its border due to the higher water availability. 406 

 407 

In t2, the floods are at their minimal extent and are principally around the Paraguay river and 408 

over the Taquari Megafan in the central region of the Pantanal. The northwest region has 409 

almost no floods in t2 but has increased NDVI compared to t0. This means that there is water 410 

allowing for the development of the vegetation but there is not enough water so it can be 411 

considered as flooded. The NDVI is lower in t2 compared to t0 over the regions with higher 412 

values of NDVI in t0 which may be related to the wildfire. It should also be noted that there 413 

is an increase of the NDVI values compared to t0 over the NorthEast of the Pantanal. This 414 

region is not usually flooded so this may be more related to the impact of the local 415 

precipitation on the vegetation during the wet season. 416 

4) DISCUSSION AND CONCLUSION 417 
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The estimation of the flooded area over large floodplains is a difficult task. The satellite 418 

products may be precious tools. This paper explored different methods to estimate the 419 

flooded area using the surface reflection from optical remote sensing products. The water-420 

related information is extracted by using different spectral indexes related to the presence of 421 

water content and vegetation. Then, different methods are developed using directly the 422 

spectral indexes to determine the presence of water: threshold-based methods and 423 

unsupervised classification to use the information from different spectral indexes at the same 424 

time. The different methods evaluated were coherent with the previous works although there 425 

is some delay between the temporal evolution of the estimated flood area and the river height 426 

at Ladário. The NDMI index has an issue to represent the flooded area as it is influenced by 427 

the vegetation during the wet period. However, considering the vegetation through the 428 

NDMI-NDVI index seems to improve the representation of the flooded area. The spatial map 429 

of the flooded area represents well the known hydrological features of the Pantanal. It should 430 

be noted that the threshold based methods have lower computational costs for similar results 431 

but the unsupervised classification methods can bring extra information.  432 

 433 

The methods of flood detection presented in this study are simple methods which are based 434 

on spectral index and do not require important preprocessing. They may be divided into two 435 

categories: the threshold based methods on the one hand and the PCA based and k-means 436 

methods on the other hand. The threshold based methods consist in applying a threshold to 437 

the spectral indexes to detect the flooded area. This threshold can be determined in 438 

comparison with other data which gives an indication either on the flooded area or on the 439 

spatial extent of the floods. Different thresholds can be determined depending on the 440 

sensibility expected for its use. The PCA and k-means methods use unsupervised 441 

classification tools applied to a combination of the spectral indexes related to the presence of 442 

water. For the PCA method, the method consists in identifying the dimension related to the 443 

presence of water to calibrate and apply a threshold to this dimension. For the k-means, it 444 

consists in identifying the clusters which correspond to the flooded area. 445 

 446 
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The advantage of all the above methods is that they can be easily applicable if the user has 447 

some observational data to establish a threshold. Then, it is possible to calculate other spectral 448 

indexes corresponding to other processes using the same optical satellite data to obtain a 449 

global panorama of the hydrological processes over a certain region quite easily with a 450 

reduced pre-processing. Nevertheless, these methods also present some disadvantages. The 451 

main disadvantage is related to the presence of cloud cover in optical satellite images which 452 

requires the filter of images containing clouds and, thus, may reduce the quantity of images 453 

available. Another disadvantage is the fact that the spectral indexes may be affected by other 454 

processes which impact the presence of water without being related to floods such as it may 455 

be the case with the presence of lush vegetation.  456 

 457 

Different solutions can be considered in order to face the issues presented previously 458 

although this may involve more sophisticated methods. Concerning the cloud cover, the 459 

combination of optical and SAR satellite data have been proven to improve the flood 460 

detection being able to solve both cloud cover issue for the optical satellite and noise from 461 

the SAR data (Prigent et al., 2020; Niedermeier et al., 2005; Inglada et al., 2016). Concerning 462 

the interaction of other processes with the flood detection when using optical satellite data, 463 

there are other methods that can be considered. The simpler process consists of developing 464 

customized spectral indexes using a linear combination of the spectral bands in order to better 465 

differentiate the vegetation from the flooded water such as it is done in other application such 466 

as the Floating Algae Index (FAI) (Dogliotti et al., 2018) used to differentiate the presence 467 

of algae in the water. Another option is, instead of evaluating the presence of flood over each 468 

pixel individually, to consider the pixels by group of pixels such as it can be done with the 469 

Object Based Image Analysis (Blaschke et al., 2014). This may help to better determine if 470 

the pixels in an object are flooded by using (1) the distribution of the reflection of the pixels 471 

composing each group and (2) the shape of the object (Louzada et al., 2020). The flood 472 

detection can also be improved by using additional ancillary data about the local orography 473 

using Digital Elevation Models. Finally, some more advanced methods of machine learning 474 

classification can be used but they require more precise information on the pixels which are 475 
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flooded in order to fit the model. Unfortunately, this type of information is not always 476 

available. 477 

 478 

Finally, we would like to emphasize that the difficulty to detect the flooded vegetation also 479 

lies in the difficulty to define a limit to qualify whether a pixel is flooded or whether it is just 480 

a pixel representing a moist soil. 481 
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Figuras y Tablas 634 

 635 

 636 

Figure 1: Localization and description of the Pantanal wetlands inside the Upper Paraguay 637 

River Basin. The blue layer corresponds to the flood extent from WaterMap (Pekel et al. 638 

2016; Source: EC JRC/Google). 639 
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 641 

 642 

Figure 2: Number of monthly available data for this MODIS product and number of dates 643 

available without clouds between 2002 and 2004. 644 
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 646 

Figure 3: Results of the spectral indexes for two different dates: one during the dry period 647 

and one during the wet period. 648 

  649 
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 650 

Figure 4: Distribution of the mNDWI / NDMI / NDVI values of the pixels.  651 
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 652 

Figure 5: Illustration of k-means model output for k = 6 for (a) the wet and (b) the dry 653 

reference images and (c) distribution of the cluster in the (mNDWI / NDMI space). 654 

  655 
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 656 

Figure 6: Values for the second dimension of the PCA for the wet reference image. 657 

  658 
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 659 

Figure 7: Time series of Padovani (2010), the river height at Ladário and of the results from 660 

the threshold-based methods using (a) mNDWI, (b) NDMI and (c) NDMI-NDVI. 661 
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 663 

Figure 8: Time series of Padovani (2010), the river height at Ladário and of the results from 664 

the threshold-based methods using (a) the Principal Component Analysis (PCA) method and 665 

(b) the k-means algorithm with k = 6.  666 
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 667 

 668 

 Figure 9: Flood frequency between 2002 and 2009 obtained from the different methods 669 

presented: 3 threshold-based methods using the (a) mNDWI, (b) NDMI and (d) NDMI-670 

NDVI index and 2 unsupervised classification methods: (e) Principal Component Analysis 671 

and (f) k-means. Occurrence of flood from (c) Padovani (2010) and (g) WaterMAP (Pekel 672 

et al. 2016; Source: EC JRC/Google) between 1984 and 2015 and floodplains delimitation 673 

from GFPLAINS250m (Nardi et al., 2019). 674 
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 676 

 677 

Figure 10: NDVI (a,b,c) and flood estimate (d,e,f) and for t0 (21/03/2004; a and d), 678 

t1(22/03/2007; b and e) and t2 (06/03/2021; c and f).  679 
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 680 

 681 

Spectral Indexes References Specificity 

mNDWI = 
−𝑆𝑊𝐼𝑅

+𝑆𝑊𝐼𝑅
 

Xu (2006) 

Ogilvie et al. (2015) 
Water detection 

NDMI =   
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 Ogilvie et al. (2015) Water detection 

NDVI =   
𝑁𝐼𝑅−

𝑁𝐼𝑅+
 Rouse et al. (1974) Vegetation and water detection 

NDMI-NDVI 
Gond et al. (2004) 

Boschetti et al. 

(2014) 

Rice flood mapping,  

water bodies and wetland 

 682 

Table I: Spectral indexes considered in this study with some reference papers and the 683 

specificity of these indexes. 684 

  685 
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Method Threshold 

 Threshold-based mNDWI -0,465 

Threshold-based NDMI 0,32 

Threshold-based NDMI-NDVI -0,45 

K-Means Cluster 4 and 5 

PCA 0,09 

 686 

Table II: Methods and their corresponding threshold values. 687 

  688 
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Method PBIAS RMSE Correlation 

mNDWI -12,74 4.894 0,8 

NDMI -23,83 6.839 0,81 

NDMI-NDVI 9,89 5.243 0,82 

K-Means 11,46 5.119 0,77 

PCA -9,83 4.871 0,78 

 689 

Table III: Resume of the statistics (Percentage bias - PBIAS, Root-Mean Square Error - 690 

RMSE, Correlation) comparing Padovani (2010) estimate with the different methods: 691 

threshold-based applied to mNDWI, NDMI and NDMI-NDVI, Principal Component 692 

Analysis (PCA) method and k-means with k = 6. The correlations are significant with a 693 

significance level of 99 %. 694 

 695 


