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ABSTRACT

This paper shows, based on daily records, the modeling of maximum precipitations in each 
quarter of eighteen meteorological stations located in different parts of Uruguay. We 
compared the performance of the classic likelihood ratio test with one of the truncated 
Crámer-von Mises type. Most of the stations did adjust under the Gumbel distribution with 
few Fréchet and Weibull cases, obtaining a most appropriate truncated Crámer-von Mises 
test performance. From the adjustment in each of the stations and the combination of three 
statistical techniques (k-means, Kolomgorov--Smirnov test of equality of distributions and 
test of independence) we concluded that the maximum rainfall throughout the Uruguayan 
territory is homogeneous with a slight difference between the southern and northern 
regions.

Keywords: extreme rainfall, GEV distribution, Gumbel distribution, geostatistics.

MODELACIÓN DE LA DISTRIBUCIÓN DE PRECIPITACIONES

MÁXIMAS EN URUGUAY
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RESUMEN

En el presente trabajo, a partir de registros diarios, se modelan las precipitaciones máximas

en cada trimestre de 18 estaciones meteorológicas ubicadas en distintos puntos de Uruguay.

Se comparó la performance del clásico test de la razón de verosimilitud contra uno del tipo

de  Crámer—von  Mises  recortado.  La  mayoría  de  las  estaciones  ajustaron  según  la

distribución  Gumbel  existiendo pocos  casos  de  Fréchet  y  de Weibull  y  se  obtuvo una

performance más apropiada del test de Crámer—von Mises recortado. A partir del ajuste en

cada una de las estaciones, combinando tres técnicas estadísticas (k-means, test de igualdad

de distribuciones de Kolmogorov—Smirnov y test de independencia) se concluyó que las

precipitaciones máximas a lo largo del territorio uruguayo son homogéneas existiendo una

leve diferencia entre la región sur y la norte.

Palabras  clave:  precipitaciones  extremas,  distribuciones  GEV,  distribución  Gumbel,

geoestadística.

1) INTRODUCTION

The importance of the study of extreme events is well-known in various areas as food

production,  economics,  energy  planning  among  many  others.  In  the  particular  case  of

extreme rainfall events, both floods and severe droughts can bring great economic, resource

and human losses. Therefore, governments should have precise models to better understand

the phenomenon and use it to estimate both the probability of events not yet observed and

the probability of return of the ones occurred already. On the one hand, there are several

works  about  extreme precipitation  in South America  focused in  physical  and statistical

aspects,  see for example (Bettolli  et  al,  2021, Calvacanti,  2012, Calvacanti  et  al,  2015,

Carril et al, 2016).

On the other hand, its spatial study is also of vital importance since its both occurrence and

modeling can radically change from one region to another. For instance, (Hernández et al,
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2011) extreme rainfalls in different locations in Venezuela were modeled using Bayesian

methods.  In  small  and  geographically  homogeneous  countries  such  as  Uruguay,  it  is

expected to have no major changes in modeling the different regions although no previous

clustering work has been found with the maximums. Some Brazilian papers (Medeiros et

al. 2019) presented a modeling for the maximum daily rainfall in the municipality of Jataí,

Goiás,  adjusted  for  Gumbel,  to  estimate  the  return  levels  up  to  100  years.  In  some,

(Anderson et al. 2020) the maximum rainfall in 12 municipalities in the northeast of Rio

Grande  do  Sul  were  modeled  by  Gumbel  with  the  objective  of  designing  hydraulic

structures.  In  others,  (Silva  et  al.  2019)  Gumbel  models  were  adjusted  to  estimate  the

maximum  intensity  of  the  rains.  In  Argentina,  (Vich  et  al.  2014)  the  generalized

distributions of extreme values were used in order to find the magnitude of the annual flow

for return. In the work of (Santiñaque et al. 2021), can be found (through spatial clustering

techniques  applied  to  the  annual  maximums  recorded  in  20  meteorological  stations

distributed throughout the entire Uruguayan territory) the expected homogeneity among the

stations considered with an exception (Mercedes). In this article, we will delve into what it

has been already found (Santiñaque et al. 2021) by working with quarterly data, that is,

quadruple the information by taking four values corresponding to the maximum in each of

the quarters of each year and through a precise modeling of each station in each quarter,

apply the classic k-means method to deepen the conclusion at the spatial level obtained in

it.  Section  2  describes  the  data  which  the  investigation  was  carried  out  with  and  the

objectives it pursues. Section 3 describes the mathematical-statistical methods, including

references. Section 4 describes the results gathered with their preliminary conclusions. Last

but not least, section 5 describes the fundamental conclusions of the investigation as well as

possible line of work to be developed within the statistics field both at a theoretical and

practical level.

2) MATERIAL AND METHODS
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2.1 Data description and objectives 

The main objective of this investigation is to obtain the distribution of the variable defined

as the maximum quarterly precipitation from daily recorded in 18 stations located across

Uruguay. On the one hand, we will deep dive into (Santiñaque et al, 2021), founding since

we  got  the  information  quadrupled,  meaning  that  we  contemplated  each  quarters

maximums for each year  considered.  Taking into account  the 18 stations’  geographical

distribution  and  each  of  their  adjustments,  on  the  other  hand,  we  will  apply  k-means

clustering to obtain results at spatial  level as well.  The data set consist of daily rainfall

records from January 1st, 1981 to December 31st, 2013 in millimeters, in each of the 18

meteorological  stations  shown in  Figure  1.  Data  were  provided by INUMET (Instituto

uruguayo de meteorología): www.inumet.gub.uy.

Each year was split into four quarters as follows: from January 1st to March 31st (quarter

1), from April 1st to June 30th (quarter 2), from July 1st to September 30th (quarter 3) and

from 1st October to December 31st (quarter 4). Due to the goal is modeling the quarterly

maximums, only four values were considered per year: the maximum values of each the

quarters, discarding all the rest of the data. Figure 1 shows the geographic distribution of

the 18 stations across Uruguay. 

2.2 Estimation of the distribution of the quarterly maximums in each station

If 
 
are n independent and identically distributed (i.i.d.) observations of certain

variable  D, the  Fisher—Tippett  theorem (Fisher  and Tippett,  1928),  (Gnedenko,  1943)

assures that as  n grows,  
 
approximates to a Gumbel, Fréchet or

Weibull  distribution  defined  as   where  

 where   and   where

 respectively.  The  three  distributions’  family  can  be  expressed  in  a
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single formula given by   where   and   for

the   case, or   for the   case.   H  is Fréchet when ξ > 0, Weibull

when  ξ< 0, and if ξ → 0,  H tends to a Gumbel distribution.  μ is called the location

parameter,  σ   the  scale  parameter  and ξ  the  shape  parameter. H  is  called  Generalized

Extreme  Value  Distribution  (GEV)  and  was  proposed  by  (Jenkinson,  1955)  and  (Von

Mises, 1936). Considering   as the accumulated precipitation on day i, in (Santiñaque,

2020) the adjustment was applied for the same set of annual maximum data, this means n =

365, providing the adjustment was accurate. In our work, we will apply the theorem for n =

90 since we will work with the maximums in each quarter. Simultaneously, we also worked

with semester data (n = 183). Even though these values of n are notoriously lower than the

ones used for annual maximums, we can fortunately prove that the theorem still gives us

good results.  Assuming  that  the  values  at  each  station  follow a  GEV distribution,  the

parameter  estimation  was  carried  out  by  applying  the  weighted  moment  method

(Greenwood et al, 1979) (method specially designed for the study of extreme values) and

the  maximum  likelihood  giving  similar  results.  The  calculations  were  made  using  R's

“extRemes” package, as well as the confidence intervals for them.  

2.3 Model diagnosis

Once the GEV parameters were estimated for each station, the model was validated using

the diagnostic graphs. The diagnostic graphs are a visual tool made up of four graphs where

the adjusted distribution (GEV) is compared with the empirical one of the data observed

through different measures. The first graph is the so-called PP-plot (represents the values of

the adjusted cumulative distribution (GEV) versus the empirical one at different points); the

closer to the diagonal, the better the fit of the model. The second graph is the so-called QQ-

plot, which represents the quantile function of the adjusted GEV distribution versus the

empirical quantile. Again the closer to the diagonal the points of this graph are seen, the

better the model is. The third graph shows the empirical density versus the density of the
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fitted one. In this case, the more similar are the graphs one another, the better the fit. The

fourth graph compares  the return levels  estimated  by the adjusted GEV model  with its

confidence bands. If the values are within these bands, the fit is good. The closer the values 

to the straight line, the closer the distribution is to the Gumbel, if the points are drawn

above (below)  the  diagonal  using  a  convex (concave)  graph,  the  more  the  distribution

resembles a Fréchet (Weibull). (Coles et al, 2001) gives a more detailed explanation of the

diagnostic graphics while (Santiñaque, 2020) only gives a synthesis of them. To have a

more precise technique diagnostic model, two goodness-of-fit hypothesis tests were applied

to  the  Gumbel  distribution,  which  are  the  likelihood  ratio  test  (LR)  and  the  truncated

Cramér —Von Mises test  (TCVM). In this  second case,  when the Gumbel  distribution

hypothesis was rejected, the test was performed taking the Fréchet distribution (when the

shape parameter estimate was positive) as the null hypothesis, or the Weibull distribution

(when the shape parameter  estimate  was negative).  TCVM is a test  of the Crámer-von

Mises type which truncates the integration region using a similar idea to the one applied in

(Kalemkerian, 2019). Here,   Gumbel(μ,σ) it is posed versus   does not

hold, where  is the maximum precipitation in the i station. If  is rejected, the test is

adapted to consider  Fréchet(μ,σ,ξ) when the estimation of the shape parameter

is positive or   Weibull(μ,σ,ξ)   when the estimation of the shape parameter is

negative. In (Santiñaque, 2020) this adaptation it is explained in detail. 

2.4 Clustering of estimated parameters

Once it was obtained a good fit in each of the stations, quarters and semesters, the k-means

methodology was applied using the estimated parameters as indicators of the distribution.

As it is well known, it is necessary to select the number of groups to apply  k-means. In

order  to  find  the  number  of  groups  to  be  separated,  it  was  calculated  the  Silhouette

coefficient  proposed  in  (Rousseeuw,  1986).  This  coefficient  splits  into  k groups  and

calculates how well the elements are classified in the k groups, it takes values between -1
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and 1 and the higher it is the coefficient, the better its elements are classified, This means

that  the  highest  k  value  the  Silhouette  coefficient  takes  it  will  the  one  suggested  for

applying clustering.

2.5 Kolmogorov—Smirnov test for equality of distributions

The classic Kolmogorov-Smirnov test was applied to test the equality or difference between

the  distributions  of  the  maximum  in  the  different  stations.  It  is  more  explicitly  stated

 have the same distribution versus   does not hold, where 

are the maximum precipitations in the stations i and j respectively.

2.6 Independence test based on recurrence rates

Regarding  the  existence  of  associations  or  dependencies  between  the  observations

corresponding to the data observed in the stations, it  was applied the recently proposed

independence test based on recurrence percentages (Kalemkerian and Fernández, 2020a).

This test aims to investigate if two variables  X and  Y are independent in a probabilistic

sense. Then, starting from  sample of  where X and Y

can  take  values  in  any  metric  space  (for  example ),  we  stated  that

are independent versus  does not hold. We used this test where X and

Y are the maximum values of all the pairs of stations considered in this work.

The theoretical details of the test are developed in (Kalemkerian and Fernández, 2020a) as

well  as  its  implementation  and  application  to  economic  and  meteorological  data  in

(Kalemkerian and Fernández, 2020b).

3) RESULTS  AND DISCUSSION

3.1 Estimation of the distribution parameters

Figures 2 and Figure 3 show the point estimates together with their 

95% confidence intervals for the parameters μ and σ respectively. 

Recall that are not the mean and the deviation of a GEV 

distribution, but are called the location and scale parameters of the 
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GEV distribution. In this investigation we are interested in the 

comparison between the distributions in each station. Except for Rocha 

station, a small difference can be observed between the stations in the 

south of the country (the 5 stations to the left of the graphs). Similarly, 

a small difference can be observed between the northern stations (the 4

stations to the right of the graphs). The differences are a little clearer 

with respect to the parameter μ than with respect to σ. Figure 4 and 

Figure 5 show the estimates of the shape parameter (ξ) for the 18 

stations in each of the quarters and semesters respectively. It is 

observed that almost all the 95% confidence intervals includes the zero 

value, so it is to be expected that most of the stations have a good fit to 

the Gumbel distribution, as will be seen in the next subsection.  In 

addition to the comparison of the behavior of different stations, figures 

2 to 4 show that the extreme rainfalls are greater in quarters 2 and 4 

than in quarters 1 and 3. 

3.2 Model diagnosis and goodness of fit

Both quarterly and semi-annually, the adjustment obtained in the 18 

stations through the diagnostic graphs was good, so it can be deduced 

that the applicability of the Fisher-Tippett theorem even for moderate 

values such as those of the data set worked (n = 90) continues to lead 

to good results. As an example, Figure 6 shows the four diagnostic 

charts for the Colonia station in the second quarter. As can be seen 

from Figure 4 and Figure 6, it is reasonable to test the Gumbel 

distribution hypothesis for each of the stations. In most cases, the 

TCVM and LR goodness-of-fit tests led to the same conclusion about the

distribution of the different stations. When both tests led to different 

conclusions, in general TCVM seem to performed better, at least in the 

sense that your results looks more suitable with the results showed in 
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Figure 4 and Figure 6 than the results obtained by the LR test. In 

particular at the Young and Melo, the estimated value of the shape 

parameter is far from zero, so it is to be expected that the Gumbel 

distribution hypothesis test will be rejected. This fact was detected by 

TCVM test but not by LR as shown in Table 1. Similarly, it can be seen 

that TCVM seem to perform better than LR at least in the following 

cases: Colonia (second quarter), Rocha (first semester) and Salto (third 

quarter). The only case of difference between the TCVM and LR test 

decision where LR apparently better detects behavior is at the Trinidad 

station in the third quarter. Table 1 includes for each quarter and 

semester the distribution of each of the stations according to the joint 

application of the TCVM test for both Gumbel and Fréchet and Weibull.

It appears from Table 1 that in the vast majority of cases, there was a 

good fit to the Gumbel distribution with a few specific cases of Fréchet 

or Weibull distributions. It is noteworthy that Paysandú is the only 

station where the three types of distributions (Fréchet, Gumbel and 

Weibull) were correctly adjusted.

3.3 Clustering of estimated parameters

According to (Kaufman, 1990), when the Silhouette coefficient takes 

values between 0.25 and 0.50, it is interpreted as the weak group 

structure. For both semester data and quarterly, the Silhouette 

coefficient showed very little heterogeneity in the data. Except in the 

fourth quarter, the coefficient obtained its maximum for k = 2 groups. 

In quarter 2, we observed that the values for k=7 and k=8 are slightly 

higher than the k=2 case. Anyway for 18 stations and values of the 

Silhouette coefficient less than 0.5 it is more reasonable to work with 

k=2 groups. Figure 7 shows the graph of the Silhouette coefficient for 

different values of k varying between 2 and 8 groups and for each of the
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quarters. Table 2 shows the values obtained separating k = 2 groups. 

Separated into two groups by k-means in quarters 1,2 and 3 and three 

groups in quarter 4, below we give the conformation of each of the 

groups according to quarter or semester.

Quarter 1.

Group 1: Colonia, Melilla, Carrasco, Punta del Este, Durazno, Melo, 

Paso de los Toros.

Group 2: Rocha, Palmitas, Trinidad, Young, Tacuarembó, Artigas, 

Mercedes, Treinta y tres, Paysandú, Salto, Rivera.

Quarter 2.

 Group 1: Colonia, Melilla, Carrasco, Punta del Este, Rocha, Mercedes, 

Trinidad, Palmitas, Treinta y tres. 

Group 2: Durazno, Melo, Paso de los Toros, Young, Paysandú, Salto, 

Tacuarembó, Artigas, Rivera. 

Quarter 3. 

Group 1: Colonia, Melilla, Carrasco, Punta del Este, Rocha, Mercedes, 

Palmitas, Trinidad, Durazno, Paysandú, Treinta y Tres, Young, Artigas. 

Group 2: Paso de los Toros, Melo, Salto, Tacuarembó, Rivera. 

Quarter 4. 

Group 1: Melilla, Carrasco, Mercedes, Palmitas, Young, Melo. 

Group 2: Durazno, Salto, Artigas, Rivera. 

Group 3: Colonia, Punta del Este, Rocha, Trinidad, Treinta y Tres, Paso 

de los Toros, Paysandú, Tacuarembó.

Semester 1.

 Group 1: Colonia, Melilla, Carrasco, Punta del Este, Rocha, Durazno, 

Melo, Paso de los Toros,  Palmitas, Trinidad, Mercedes, Treinta y tres, 

Paysandú, Salto, Rivera.

 Group 2: Young, Tacuarembó, Artigas. 
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Semester 2.

 Group 1: Colonia, Punta del Este, Rocha, Palmitas, Paysandú, Salto, 

Mercedes. 

Group 2: Melilla, Carrasco, Trinidad, Durazno, Treinta y Tres, Young, 

Paso de los Toros, Melo, Tacuarembó, Artigas, Rivera.

It is observed that the southernmost stations of Uruguay (Colonia, 

Melilla, Carrasco, Punta del Este and Rocha) are in the same group in 

quarters 1, 2 and 3 (except for Rocha in quarter 3).  In Figure 8 it is 

shown that separating in k = 2 groups for quarters 1 to 3 and k=3 

groups for quarter 4,  k-means works well. On the other hand, if we 

consider the easternmost stations in Uruguay (Punta del Este, Rocha, 

Melo and Treinta y Tres) and the westernmost stations (Colonia, 

Mercedes, Palmitas, Young, Paysandú and Salto) it is observed that 

they are mixed in different groups in each quarter.

3.4 Comparison between distributions

The application of the Kolmogorov-Smirnov test for equality of 

distributions (applied in pairs at two stations) in most cases did not 

reject the hypothesis of equality of distributions. As an example, Table 3

shows the results corresponding to the fourth quarter that among the 

stations further south with respect to the stations further north. For 

example in row 1 we show the p-value to the test between Colonia 

station and each of the other and in the final column we show the p-

value to the test between Artigas station and each of the other. In most 

cases rejects the equality of distributions at 10%. Similar results were 

obtained in the other quarters. In turn, taking two stations from the 

south or two stations from the north, the null hypothesis of equality of 

distributions is not rejected.

The results obtained through this test are consistent with what was 
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informally expressed in subsection 3.1 from the visual inspection of 

figures 2 to 4, where small differences are seen in the estimates of the 

different stations, but this test gives us a tool more precise with respect

to the equality or not of the distribution of the different stations. On the

other hand, the results reported in Table 3 are in line with the 

estimates of  shown in Figure 2.μ

3.5 Independence test based on recurrence rates

The application of the independence test confirmed the expected 

dependence between values corresponding to geographically close 

stations. For example, at the level of 10%, the independence is rejected 

between Melilla (X) and Carrasco (Y) in quarter 1 (p-value = 0) or 

between Rivera (X) and Artigas (Y) in quarter 1 (p-value = 0.029). In 

general terms and in agreement with what was observed in the 

clustering section, it was observed that the maximum values observed 

in the 5 southernmost stations were independent of the maximums 

observed in the 4 northernmost stations. Table 4 shows the decisions 

made by the independence test between the vectors X = (Colonia, 

Melilla, Carrasco, Punta del Este, Rocha) and Y = (Salto, Tacuarembó, 

Rivera, Artigas) in each of the quarters and semesters.

It is known that in Uruguay it rains more in quarters 1 to 3 in the north 

than in the south,  see the annual accumulate rainfall in Uruguay given 

in Figure 1,  this fact is reflected in terms of extreme rainfall too, 

according to the results shown in Table 4. 

Finally, Table 5 shows the decision resulting from the application of the

independence test between both groups separated through k-means for 

each of the quarters and semesters.

As seen in Table 5, except for quarter 4 and semester 2 in the other 

cases, the hypothesis of independence between the groups is not 
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rejected. The explanation in the case of quarter 4 (where the groups 

give dependents, is due to the fact that Carrasco is in group 1 while the 

very close Melilla station is in group 2, with Carrasco and Melilla being 

two stations very close between them. The nearby stations are highly 

dependent. In semester 2, something similar occurs between the Salto 

station (which belongs to group 1) and Tacuarembó station (which 

belongs to group 2).

Summarizing, by combining these three statistical tools, and 

concerning to maximum rainfall in each quarter, small difference were 

found between south and north but not between east and west. This 

result can be interesting because it is well-known that in winter the 

accumulated rainfall distribution gradient is west- east and south-north 

in the rest of the seasons. This is not reflected (according to the results 

we have obtained) when we work with maximum rainfall.

4) CONCLUSIONS

In this investigation, the distribution of the maximum rainfall in each 

quarter was obtained for each one of the 18 meteorological stations 

distributed throughout the entire Uruguayan territory. The vast 

majority had a good fit to the Gumbel distribution and in a few cases 

Fréchet or Weibull. Taking advantage of the geographical location of 

the different stations, this information was used to draw conclusions at 

the spatial level. From the adjusted distributions, combining three 

statistical techniques, clustering applying k-means, test of 

independence and the test of equality of distributions, it was obtained 

as a fundamental conclusion that the behavior of the maximum rainfall 

at the quarterly level is homogeneous throughout the entire Uruguayan 

territory with slightly differences between the southern and northern 

stations, which suggests a separation (although not clearly marked) 
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between two regions, one corresponding to the southern region and the

other to the northern region. Also, differences between the east and 

west are not observed. Another important conclusion of the work is 

from the statistical point of view, is that in general TCVM seem to 

performed better than the results obtained by the LR test. Given that 

the TCVM applied is an intuitive adaptation of the one proposed for the 

normal distribution in (Kalemkerian, 2019), as future work the 

theoretical development of this tool applied to the Gumbel distribution 

would be of interest, as well as the comparison with other tests related 

to the Gumbel for other data sets.
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Figures and Tables

Figure 1. Geographical distribution of the 18 meteorological stations considered in this
work The map was obtained from Google Maps.
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Figure 2. Estimation of the localization parameter (μ) in blue and confidence intervals
at 95% for each one of the stations. Quarter 1 (top left), quarter 2 (top right), quarter 3

(bottom left) and quarter 4 (bottom right).
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Figure 3. Point and interval estimation at 95% for the scale parameter (σ) in blue for
each station. Quarter 1 (top left), quarter 2 (top right), quarter 3 (bottom left) and

quarter 4 (bottom right).
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Figure 4. Point and interval estimation at 95% for ξ. Quarter 1 (top left), quarter 2 (top 
right), quarter 3 (bottom left) and quarter 4 (bottom right). The red line helps to see the 
position between the estimation of ξ with respect to zero (Gumbel distribution). 
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Figure 5.  Point and interval estimation at 95% for ξ for each semester. The red line 
helps to see the position between the estimation of ξ with respect to zero (Gumbel 
distribution). Semester 1 (left), semester 2 (right).
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Figure 6.  Diagnosis plots for Colonia station in the second quarter. pp-plot (top left), 
qq-plot (top right), empirical and model densities (bottom left) and return level plot 
(bottom right).
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Figure 7. Silhouette coefficient from k=2  groups to k=8 groups. Left to right and up to
down quarter 1, quarter 2, quarter 3 and quarter 4.
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Figure 8. Graph of the 18 triples (μ, σ, ξ) in each quarter separated into 2 groups 
(quarters 1, 2 and 3) and three groups in quarter 4. In red those belonging to group 1, in 
blue those belonging to group 2, in yellow group 3) and in green the centroid of each 
cluster. Quarter 1 (top left), Quarter 2 (top right), Quarter 3 (bottom left), and Quarter 4 
(bottom right).
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          Quarter 1    Quarter 2     Quarter 3     Quarter 4    Semester 1   Semester 2
TCVM LR D TCVM LR D TCVM LR D TCVM LR D TCVM LR D TCVM LR D

Colonia 0.499 0.875 G 0.03
7

0.058 F 0.342 0.708 G 0.125 0.063 G 0.519 0.237 G 0.273 0.028 G

Melilla 0.304 0.047 G 0.27
8

0.734 G 0.990 0.907 G 0.069 0.064 G 0.731 0.250 G 0.361 0.210 G

Carrasco 0.616 0.210 G 0.44
3

0.889 G 0.412 0.470 G 0.135 0.070 G 0.725 0.267 G 0.606 0.696 G

Punta 0.618 0.406 G 0.78
5

0.150 G 0.499 0.288 G 0.424 0.965 G 0.303 0.549 G 0.730 0.801 G

Rocha 0.121 0.376 G 0.27
1

0.098 G 0.657 0.181 G 0.750 0.562 G 0.023 0.278 F 0.713 0.515 G

Mercedes 0.016 0.005 F 0.13
5

1.000 G 0.830 1.000 G 0.493 1.000 G 0.013 0.042 F 0.598 0.681 G

Trinidad 0.933 0.549 G 0.25
0

0.695 G 0.042 0.951 F 0.250 0.604 G 0.474 0.495 G 0.131 0.851 G

Young 0.683 1.000 G 0.39
3

0.309 G 0.891 0.727 G 0.116 0.389 G 0.184 0.291 G 0.034 0.340 F

Palmitas 0.717 0.295 G 0.07
7

0.104 G 0.347 0.845 G 0.632 0.409 G 0.613 0.985 G 0.476 0.952 G

Durazno 0.846 0.693 G 0.21
7

0.167 G 0.712 0.540 G 0.639 0.956 G 0.269 0.376 G 0.509 0.282 G

Treinta 0.602 0.765 G 0.05
6

0.025 G 0.559 0.425 G 0.035 0.012 F 0.279 0.245 G 0.442 0.215 G

P. Toros 0.196 0.103 G 0.50
1

0.689 G 0.061 0.178 G 0.701 0.150 G 0.931 0.580 G 0.291 0.566 W

Melo 0.947 0.547 G 0.19
6

0.254 G 0.836 0.953 G 0.042 0.197 G 0.650 0.868 G 0.034 0.331 W

Paysandú 0.036 0.004 F 0.04
1

0.007 w 0.505 0.765 G 0.345 0.374 G 0.341 0.819 G 0.049 0.141 F

Salto 0.007 0.014 F 0.48
0

0.867 G 0.035 0.065 w 0.487 0.195 G 0.151 0.029 G 0.233 0.148 G

Tacuaremb
ó

0.194 0.876 G 0.69
9

0.484 G 0.126 0.199 G 0.287 0.275 G 0.440 0.082 G 0.534 0.940 G

Rivera 0.442 0.199 G 0.72
1

0.907 G 0.755 0.933 G 0.624 0.735 G 0.440 0.844 G 0.726 0.913 G

Artigas 0.845 0.229 G 0.11
1

0.240 G 0.853 0.451 G 0.209 0.077 G 0.297 0.562 G 0.340 0.152 G

Table 1. p-value for the TCVM and LR tests. Column “D” means adjusted distribution 
according to TCVM test at 5%: G (Gumbel), F (Fréchet), W (Weibull). In bold the p-
values greater than 0.05.

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Semester 1 Semester 2
0.3117 0.3138 0.3520 0.3014 0.3072 0.3019

Table 2. Mean value of the Silhouette coefficient for each one of the different semesters 
and quarters separating in  k=2 groups.
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Melilla Carrasco Pta Este Rocha Salto Tacua Rivera Artigas

Colonia NR(0.843) NR(0.640) NR(0.448
)

NR(0.843) R(0.096) NR(0.172) R(0.025) R(0.096)

Melilla NR(0.843) NR(0.286
)

NR(0.286) NR(0.843) NR(0.645) NR(0.448) NR(0.172)

Carrasco NR(0.287
)

NR(0.287) NR(0.480) NR(0.843) NR(0.172) R(0.025)

Pta  Este NR(0.843) R(0.051) R(0.096) R(0.012) R(0.005)

Rocha R(0.025) R(0.051) R(0.005) R(0.005)

Salto NR(0.645) NR0.843) NR(0.453)

Tacua NR(0.172) R(0.025)

Rivera NR(0.646)

Table 3. Application of the Kolmogorov-Smirnov test to pairs of stations for data from 
quarter 4, at the significance level of 10%. "NR" means that the null hypothesis of 
equality of distributions is not rejected, while "R" means that we reject the null 
hypothesis. In parentheses the p-value of the test.

Trimestre 1 Trimestre 2 Trimestre 3 Trimestre 4 Semestre 1 Semestre 2
NR (0.537) NR (0.651) R (0.041) NR (0.519) NR (0.102) NR (0.573)

Table 4.  Decision at 10% based on the independence test between the southern and 
northern areas: X = (Colonia, Melilla, Carrasco, Punta del Este, Rocha) and Y = (Salto, 
Tacuarembó, Rivera, Artigas). "NR" means that the null hypothesis of independence 
between X and Y is not rejected, while "R" means that we reject the null hypothesis. 
The p-value of each test is included in parentheses.

Trimestre 1 Trimestre 2 Trimestre 3 Trimestre 4 Semestre 1 Semestre 2
NR (0.287) NR (0.393) NR (0.268) R (0.000) NR (0.640) R (0.008)

Table 5.  Decision at 10% from the independence test between group 1 (X) and group 2
(Y). "NR" means that the null hypothesis of independence between X and Y is not 
rejected, while "R" means that we reject the null hypothesis. The p-value of each test is 
included in parentheses.
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