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ABSTRACT 

 

This research aimed to identify an alternative method to estimate reference 

evapotranspiration (ETo) with scarce climatological information in southwestern Colombia 

between 1983-2017 by evaluating and comparing different machine learning techniques. The 

FAO Penman-Monteith (FAO-PM56) was used as the reference method and four empirical 

methods (Hargreaves, Thornthwaite, Cenicafé, and Turc) were assessed with five metrics to 
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evaluate the method of best fit to FAO-PM56, root mean square error (RMSE), mean absolute 

error (MAE), mean bias error (MBE), Nash-Sutcliffe model efficiency coefficient (NSE), 

and Pearson correlation coefficient (R). Three models were designed using machine learning 

techniques to estimate ETo, multiple linear regression (MLR), artificial neural networks 

(ANN), and autoregressive integrated moving average model (ARIMA). The results showed 

that the ARIMA-M3 model reported the best performance metrics (RMSE = 4.13 mm month-

1, MAE = 3.15 mm month-1, MBE = -0.08 mm month-1, NSE = 0.96 and r = 0.98). However, 

it restricts in that it can only be used locally and cannot be extrapolated to other climatological 

stations, because it was calibrated with specific conditions (exogenous variables) and 

stations, unlike the ANN-M1 model, which only requires training the network for its 

application. This method will allow estimating ETo in places with scarce information, as vital 

for water management in places with much uncertainty regarding accessibility and 

availability. 

 

Key Words: Artificial neural network; FAO-56 Penman-Monteith; Performance metrics; 

Southwestern Colombia; Evapotranspiration 

 

ESTIMACIÓN DE EVAPOTRANSPIRACIÓN DE REFERENCIA CON 

INFORMACIÓN ESCASA UTILIZANDO MACHINE LEARNING EN 

EL SUROCCIDENTE COLOMBIANO  

 

RESUMEN 

 

Esta investigación tuvo como objetivo identificar un método alternativo para estimar la 

evapotranspiración de referencia (ETo) con escasa información climatológica en el suroeste 

de Colombia entre 1983-2017, evaluando y comparando diferentes técnicas de machine 

learning. Se utilizó el método de FAO Penman-Monteith (FAO-PM56) como método de 

referencia y se evaluaron 4 métodos de empíricos (Hargreaves, Thornthwaite, Cenicafé y 

Turc) con cinco métricas para evaluar el método de mejor ajuste al FAO-PM56, error 
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cuadrático medio (RMSE), error medio absoluto (MAE), error medio de sesgo (MBE), 

coeficiente de eficiencia del modelo de Nash-Sutcliffe (NSE) y coeficiente de correlación de 

Pearson (R). Se diseñaron tres modelos utilizando técnicas de machine learning para estimar 

la ETo, regresión lineal múltiple (MLR), redes neuronales artificiales (ANN) y modelo de 

media móvil integrada autorregresiva (ARIMA). Los resultados mostraron que el modelo 

ARIMA-M3 presentó la mejor métrica de rendimiento (RMSE = 4,13 mm mes-1, MAE = 

3,15 mm mes-1, MBE = -0,08 mm mes-1, NSE = 0,96 y R = 0,98). Sin embargo, tiene la 

restricción de que sólo se puede utilizar localmente y no se puede extrapolar a otras estaciones 

climatológicas, porque se calibró con estaciones y condiciones específicas (variables 

exógenas), a diferencia del modelo RNA-M1, que sólo requiere entrenar la red para su 

aplicación. Este método permitirá estimar la ETo en lugares con escasa información, lo que 

es vital para la gestión del agua en lugares con mucha incertidumbre en cuanto a accesibilidad 

y disponibilidad. 

 

Palabras clave: Redes neuronales artificiales; FAO-PM56 Penman-Monteith, Métricas de 

desempeño, Suroccidente Colombiano, Evapotranspiración 

 

1) INTRODUCTION 

Evapotranspiration is an aerodynamic physical process where water from the land surface evaporates, 

and water from plants transpires (Allen et al., 1998; Alves et al., 2017; Granata et al., 2020; Meneses 

et al., 2020). Correct estimation of evapotranspiration is fundamental in different research areas 

(Maček et al. 2018; Kumar et al., 2020), such as climate change (Cannarozo et al., 2006; Liu et al., 

2008; Yao et al. 2009; Yang et al., 2011), hydroclimatology (Rivas and Caselles 2004; Castañeda and 

Rao, 2005), water resources planning and management (Huizhi and Jianwu, 2012; Łabędzki et al., 

2014; Biggs et al., 2016) and irrigation needs (Yoder et al., 2005; Tabari, 2010). 

The lysimeter is a suitable method for estimating field evapotranspiration in the field (Wang and 

Dickinson 2012). However, it has several limitations, such as high installation costs, complex 

instruments (Valipour, 2015; Goh et al., 2021), prior experimental setup, and maintenance hours to 

achieve reliable results (Igbadun et al., 2006; Choi and Jeon 2018; Jing et al., 2019; Ahmadi and 

Javanbakht 2020). 
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Indirect methods have been developed to estimate reference evapotranspiration (ETo) (Choi and Jeon, 

2018). ETo is defined as the evapotranspiration of a grass crop with an assumed height of 0.12 m, a 

fixed surface resistance of 70 s m-1, and an albedo of 0.23, with adequate nutrient and water 

availability (Allen et al., 1998). Methods that estimate ETo based on climatic factors can be classified 

as those based on temperature (Thornthwaite and Wilm, 1948; Blanney and Criddle, 1950; 

Hargreaves and Samani, 1985), radiation (Turc, 1961; Priestley and Taylor 1972), and combined 

methods (Allen et al., 1998). 

The most recommended method for ETo estimation is the so-called FAO Penman-Monteith (FAO-

PM56), developed by the Food and Agriculture Organization of the United Nations (FAO) (Allen et 

al., 1998) and the World Meteorological Organization (WMO) (Allen et al., 1998; Granata et al., 

2020; Cobaner, 2010; Huo et al., 2012; Laqui et al., 2014; Ayaz et al., 2021). It can be used anywhere 

in the world without the need to calibrate the equation. Because of this, it has been subject to extensive 

validation with lysimeters in various global climatic conditions (Landeras et al., 2008; Nema et al., 

2017; Quej et al., 2019; Ayaz et al., 2021; Ferreira et al., 2021). 

The main drawback of using this method is the requirement of a significant number of variables for 

its estimation, these variables are maximum and minimum air temperature, wind speed, precipitation, 

and solar radiation (Valipour, 2015). This restricts its worldwide use, especially in places with a lack 

and insufficient availability of climatological information. For example, in protected areas and/or 

armed conflict countries with low budgets (Traore et al., 2008). 

Numerous studies evaluate ETo models in Colombia, standing out among them the one by Barco et 

al. (2020), who made a macroscale estimate of evaporation in Colombia using the methods of Turc, 

Morton, Penman, Holdridge, and Budyko. However, they did not make comparisons with field 

measurements. Jaramillo (2006) developed the empirical equation of the National Coffee Research 

Center (Cenicafé) in several locations in the Colombian Andes, mainly in the Cauca and Magdalena 

River basins, and compared the relationship between the observed values of FAO-PM56 with the 

Class A evaporation tank. Poveda et al. (2007) regionalized ETo in Colombia using the methods of 

Turc, Morton, Coutagne, Thornthwaite, Holdridge, Meyer, Penman, Budyko, and Cenicafé. Ramírez 

et al. (2011) assessed the application of the FAO-PM56, the Hargreaves, the Garcia and Lopez 

modified, and the lysimeter to estimate ETo in the coffee zone of Colombia. Toro-Trujillo et al. 

(2015) evaluated the reliability of evapotranspiration estimation of the Hargreaves-Samani and 

radiation methods concerning the FAO-PM56 method in the northern banana-growing zone Urabá 

Antioqueño. Mendoza & Peña (2021) compared the Blaney-Criddle, Hargreaves, Priestley-Taylor, 



Artículo en edición                                                                                                             

 

5 

 

and Camargo methods with values of class A evaporation tanks from Colombian Sugarcane Research 

Center (Cenicaña) and FAO-PM56. 

The different results of the authors agree that no method shows significant superiority over the other, 

which is attributed to the low quality of the available information. For this reason, models to estimate 

ETo have been developed during the last decades, using machine learning techniques such as 

Artificial Neural Networks (ANN) (Zanneti et al., 2008; Alves et al., 2017; Fonseca et al., 2018; 

Laqui et al., 2019; Meneses et al., 2020) Autoregressive Integrated Moving Average Model (ARIMA) 

(Jordan et al., 2008; Gautam and Sinha, Mossad and Alazba, 2016; Bouznad et al., 2020), and 

Multiple Linear Regression (MLR) (Yirga, 2019). 

In Colombia, the spatial distribution of climatological stations is uneven due to several factors, such 

as complex topography (e.g., the Andean Mountain range), areas affected by the armed conflict, and 

low investment in technological resources, among others (Urrea et al., 2019; Canchala et al., 2022). 

In southwestern Colombia (Nariño), 76% of the rainfall stations are in the Andean region, with a 

density of one station every 470 km2, covering 40% of the total area of Nariño. The remaining 24% 

of the rainfall stations are in the Pacific region, with a density of one station every 1,442 km2, 

accounting the 52% of the total area of Nariño. In the case of climatological stations, the scenario is 

worse since, in the Andean region, there is one every 1,720 km2 and only one in the Pacific region 

(Barbacoas) (Ocampo-Marulanda et al., 2022). The rainfall stations are those available Instituto de 

Hidrología, Meteorología y Estudios Ambientales (IDEAM). The accessibility and availability of 

information on climatological variables allow for a better understanding of the hydrological cycle and 

more efficient management for its use in agriculture. 

The southwest of Colombia has the highest percentage of harvested area (7.9%); therefore, 

considering the problems mentioned earlier and that Nariño is one of the departments with the highest 

participation in the country's agricultural production (Moncayo, 2015), adequate planning of water 

resources must be carried out to ensure food security. 

In this scenario, the objective of this research was to determine a model that allows estimating ETo 

in a scenario with scarce information and high spatiotemporal variability in climatic elements. A 

contradictory aspect of the study area is that the areas with higher rainfall have less climatological 

information and more missing data in their records. Knowledge of ETo would enable better 

management to contribute to the sustainability of food sovereignty and security by meeting the 

Sustainable Development Goals related to objective 2, zero hunger; objective 13, climate action; and 

objective 15, life on land (United Nations, 2018). 



Artículo en edición                                                                                                             

 

6 

 

 

2) DATA AND METHODS 

2.1) Study area 

The southwest of Colombia (Nariño) is one of the most biodiverse regions of the country and the 

world, located between 0°21' and 2°40' north latitude and 76°50' and 79°02' west longitude, with 

approximately 33,268 km2 (Canchala et al., 2020; Ocampo-Marulanda et al., 2022). The Pacific 

region (14,754 km2) accounts for 52%, the Andean region (15,466 km2) for 40% and the Amazon 

region (3,048 km2) for the remaining 8% (See Figure 1) (Gobernación de Nariño, 2019). In addition, 

it has a privileged geostrategic position due to its proximity to the tropical Pacific Ocean, the Andes 

Mountains, and the Colombian-Ecuadorian border (Canchala et al., 2019). 

 

2.2 ) Data 

In this research, time series of maximum (TMAX), minimum (TMIN), and mean temperature 

(TMED) in °C, humidity (RH) in %, sunshine hours (SBH) in hours, and height in meters above sea 

level (COTA) were considered as regressor variables on a monthly scale from 1983 to 2017. Data 

from 10 climatological stations across southwestern Colombia (see Figure 1) were provided by 

IDEAM (see Figure 1). The missing data in the time series were less than 25%. They were estimated 

using Non-Linear Principal Component Analysis (NLPCA), a methodology suggested by Scholz et 

al. (2005), and applied in hydroclimatology by Canchala et al. (2019). 

Wind speed information was only available for three stations, Aeropuerto Antonio Nariño, El Encano, 

and Obonuco. The imputation of missing data was performed as mentioned in the Methods. 

 

2.3 ) Methods 

Table 1 shows some methods for estimating ETo. FAO recommends using the FAO-PM56 method 

to determine ETo without lysimeters. The estimation involves a wide range of variables, mean air 

temperature, relative humidity, solar radiation, and wind speed. Empirical models have been 

developed to estimate ETo with fewer climatic variables. For example, Hargreaves developed a 

model based on maximum, mean, minimum temperature, and solar radiation. Turc based his model 

on mean temperature, relative humidity, and net solar radiation. Thornthwaite proposed a model 

based on mean temperature and annual heat index, and Jaramillo based his model on the relationship 

between altitude and evapotranspiration.  
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The assessed performance metrics are presented in Table 2. The following metrics were used to 

evaluate the performance and precision of the alternative methods for estimating ETo, compared to 

FAO-PM56. RMSE, which characterizes the variance of the error (Rodrigues and Braga, 2021). MAE 

takes the absolute value of the difference between ETo values (Choi and Jeon, 2018). MBE measures 

the average error magnitude of the observed and estimated data (Goh et al., 2021). NSE is used to 

evaluate the predictive ability of hydrological models (Nash and Sutcliffe 1980; Knoben et al., 2019; 

Adnan et al., 2021). Finally, R measures the linear relationship between estimated and calculated 

values (Laqui et al., 2019).  

The Machine learning methods used in this research were: 

– Multiple Linear Regression (MLR). Regression analysis is a statistical technique belonging to the 

class of supervised statistical learning methods that allows investigating and modelling the 

relationship between a response variable and one or multiple predictor variables. An advantage of 

multiple linear regression is that it allows to evaluation of the effect of each predictor variable in the 

presence of the other variables (Montgomery et al., 2002). The multiple linear regression model is 

presented in Equation 1. 

y = βo+β1X1+β2X2+…+ βkXk + e  (1) 

Where 

y = Response variable 

βo = Intercept with the y-axis 

β1,…,Βk = partial regression coefficients that measure the expected change in the response variable 

for each unit change in the predictor variable X (j=1,2,...,k), when all other regressor variables are 

held constant.  

e = Random component of error that must comply with the assumptions of normality, zero mean, 

constant variance (homoscedasticity) (Goldfend and Quandt, 1965), and independence (Fox, 2016). 

– Autoregressive Integrated Moving Average (ARIMA). The ARIMA model is a statistical 

methodology that allows describing the future behavior of a time series as a linear function of past 

data and errors due to chance, in addition to considering the possible inclusion of a seasonal 

component (Box et al., 1974). The model that allows considering regular (non-seasonal) effects in the 

series can be expressed as in Equation 2. 

(1 - Φ1B - Φ2 B2 -…- Φp Bp)(1-B)d yt =(1 – θ1B – θ2B2 -…- θqBq )           (2) 

Where p and q indicate the order of the autoregressive (AR) and moving average (MA) components  

respectively, and d indicates the order of the integrated component (I) to extract the possible sources 
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of the non-stationarity present in the series under analysis (Stellwagen and Tashman, 2013). The AR 

and MA terms can be identified using the simple autocorrelation functions (ACF) and partial 

autocorrelation functions (PACF) of the time series data. ARIMA models were used to model the 

temporal correlation presented in the MLR models. 

– Artificial Neuronal Network (ANN). AANs are computational bio-inspired models based on 

biological neurons, which can store and retrieve data, classify patterns, realize input patterns to output 

patterns, and similar group patterns. These follow two learning processes, supervised and 

unsupervised (Tabari and Talaee, 2013). Multilayer perceptron (MLP) is a type of feed-forward ANN 

mainly used for supervised learning (Haykin, 1994) and models complex nonlinear processes in water 

resources and hydrology problems. The MLP is a perceptron network with more than one 

intermediate layer and is usually represented with an output. The perceptron uses a matrix to model 

a neural network and is mainly used to discriminate an input x to a single output value F(x) in that 

matrix (See Equation 3). 

                                               F (x) = { 

The function F(x) has a binary value and is used primarily for sorting, w is a vector with an associated 

weight, and u is a "threshold" used to offset the activation function. The sum of the inputs to the 

neuron must produce a value greater than u to change the neuron from state 0 to 1.  

A successful development for an ANN depends on several parameters, e.g., hidden layers, neurons in 

the hidden layer, learning rate, and activation function, among others. However, there is no guideline 

on how to build an ANN or how many neurons should be placed in the hidden layer to estimate the 

output (Murat and Serhat, 2018). Therefore, through trial-and-error tests, the parameters were varied 

until the combination with the lowest error and the highest possible R2 was found. In this research 

multiple architectures were built, combining activation functions, such as: identity, tanh, logistic and 

relu with the optimizers lbgfs, adam and sgd. Furthermore, given the complexity and the requirements 

one hidden layer with three neurons and a learning rate of 0.01 was enough. Through trial-and-error 

test, the best performance model with 1000 iterations was determined, and the best model was: tanh 

function activation, lbgfs optimizer, one hidden layer, three neurons and a learning rate of 0.01. The 

training algorithm of the ANN was 80% of the data and 20% to validate. 

In selecting regressor variables for the ARIMA and MLR models, the VIF was used to avoid 

multicollinearity among the variables (Montgomery et al., 2002). In the case of ANNs, this technique 

performs nonlinear computational procedures which are not affected by multicollinearity because 

1 if w .  x-u>0  

(3) 0 otherwise 
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they tend to be overparameterized, i.e., the same algorithm updates the weights associated with 

redundant variables to have no impact on the final solution (De Veaux and Ungar, 1994). 

Linear Principal Component Analysis (PCA) was applied to formulate one of the ARIMA models. 

PCA is one of the most widely used statistical techniques to reduce dimensionality and preserve the 

most significant amount of information in a data set (Jolliffe, 2002), allowing the elimination of 

possible multicollinearity between regressor variables. The principal components between TMAX, 

TMED, and TMIN were estimated in this case. 

Lee et al. (2012) mentioned that ETo is affected by topographic factors such as altitude because as 

altitude increases, there is a decrease in solar radiation and wind speed. Therefore, to represent the 

monthly ETo, an interpolation process was performed using the cokriging technique using altitude as 

an exogenous variable and with a spherical semivariogram. Basconcillo et al. (2017) and Cerón et al. 

(2021) suggest that with this technique, better correlations are obtained with monthly temperature 

and precipitation; considering that the former is one of the variables most correlated with ETo, it will 

be possible to spatialize ETo in southwestern Colombia. 

The general methodology is presented in Figure 2. Initially, the information provided by IDEAM was 

compiled, then the exploratory data analysis was carried out, and the missing data were estimated. 

Subsequently, the ETo of the three stations was estimated using the Hargreaves, Thornthwaite, 

Cenicafé, and Turc methods. Then, the ETo methods were evaluated using five performance metrics, 

Nash-Sutcliffe model efficiency coefficient (NSE), Pearson correlation coefficient I, root mean 

square error (RMSE), mean absolute error (MAE) and mean bias error (MBE), to select the best-fit 

method concerning for FAO-PM56. Next, Spearman’s correlation coefficient was applied to find the 

variables with the highest correlation with ETo and the variance inflation factor (VIF) to reduce 

multicollinearity among the regressor variables of the proposed statistical models. Finally, three 

models were built for each machine learning technique (Artificial Neural Networks – ANN, Multiple 

Linear Regression – RLM, and Autoregressive Integrated Moving Average Model – ARIMA), i.e., 

nine models, which were evaluated by five performance metrics (NSE, R, RMSE, MAE and MBE) 

to estimate FAO-PM56 with scarce information. 

Then, multi-year monthly averages of all variables were estimated, and the annual value of 

precipitation was reported. Subsequently, the Jarque-Bera normality test was performed, which tests 

whether a data set presents the skewness and kurtosis of a normal distribution (Jarque and Bera, 1982). 

The test was used to determine parametric or non-parametric statistical tests to calculate the 

correlation between climatic variables. Empirical models have been developed to estimate Eto with 
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fewer climatic variables. 

 

3) RESULTS AND DISCUSSION 

The descriptive statistics of the climatic variables were estimated and presented in Table 3. It can be 

observed that the altitude of the stations is in the mountainous zone, except for Barbacoas, which is 

in the Pacific plain, and Monopamba, located in the Amazon jungle (see Figure 1). The precipitation 

values ranged between 888 and 6,927 mm/year, consistent results considering that the department 

includes the Andean, Amazon, and Pacific regions, the latter being one of the rainiest regions in the 

world. The TMAX ranges between 32.5 °C and 18.8 °C, the TMED between 11.7 °C and 26.2 °C, 

and the TMIN between 4.8 °C and 20 °C. The RH presented values above 75%, with 89.5% being 

the highest reported at the Barbacoas station. Finally, the SBH reported values between 2.1 and 5.4 

hours. The indicators shown in Table 3 were calculated with the complete time series, with a previous 

estimation of missing data using NLPCA. 

The reconstruction errors were, 7 mm month-1 for precipitation, 0.16 °C month-1 for maximum 

temperature, 0.07 °C month-1 for mean temperature, 0.16 °C month-1 for minimum temperature, 

0.55 % month-1 for relative humidity and 0.10 hours month-1 for sunshine hours. These results show 

very low error variance in magnitude, demonstrating that the imputation method accurately estimated 

the missing data in the time series. 

Figure 3 shows a graphical comparison of ETo methods with FAO-PM56 for the time series of the 

Aeropuerto Antonio Nariño, El Encano and Obonuco stations to find the method with the most well-

adjustment to FAO-PM56. Hargreaves method was the only one that overestimated ETo, since the 

others tended to underestimate it. The Turc method was similar in shape and magnitude to the FAO-

PM56 method at El Encano station, while at Obonuco, the most well-adjusted method was 

Hargreaves. At the Aeropuerto Antonio Nariño station, it was observed that both methods were 

adjusted in shape and magnitude. 

In this sense, the performance metrics were estimated to validate the most adjusted method 

concerning FAO-PM56, and the results are presented in Table 4. The average RMSE performance 

metrics ranged from 16.9 to 50.4 mm month-1, MAE from 14.2 to 48.7 mm month-1, MBE from 10.3 

to 48.7 mm month-1, R from 0.80 to 0.90 and NSE from 0.64 to 0.81. The results of the Turc method 

show that it was the most well-adjusted concerning FAO-PM56 by the reported metrics (MAE= 14.2 

mm month-1, MBE=10.3 mm month-1 and RMSE= 16.9 mm month-1). However, the R and NSE 

metrics (0.90 and 0.81) show Hargreaves as the best. Trajkovic and Kolakovic (2009a) state that Turc 
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method overestimates ETo at windless locations and underestimates at windy locations; for example, 

Figure 3 shows underestimation in Aeropuerto Antonio Nariño, Obonuco and El Encano stations 

located at heights above 1700 m. These results agree with Poveda et al. (2007), who regionalized 

evapotranspiration in Colombia and observed that the Turc and Morton methods are the most 

appropriate; and Fisher & Pringle (2013), who used three alternative methods in a humid region in 

the United States (Mississippi) and concluded that Turc consistently underestimates ETo.  

Other research reports that the Turc method has historically performed well under humid (Jensen et 

al., 1990; Trajkovic and Kolakovic, 2009b; Fisher & Pringle, 2013; Birara et al., 2020) and tropic 

conditions (Tukimat et al., 2012; Lima et al., 2019; Santos et al., 2019; Monteiro et al., 2021). One 

of the possible reasons is that the method was initially developed under wet conditions (southern 

France) (Tabari, 2010; Ahmadi and Javanbakht 2020; Diouf et al., 2016). In a semiarid region in 

Senegal Diouf et al. (2016) concluded that the Turc method showed similar high accuracy (R2>0.80) 

reported in this research. Similar findings were observed in Malaysia, where Goh et al. (2021) 

concluded that the Turc method provides the closest results to FAO-PM56 in subhumid and humid 

climate conditions in the absence of data, as the R2 and the MBE reported one of the highest R2 (0.81) 

and the MBE results were closer to zero for the monthly ETo estimation concerning FAO-PM56. The 

Same happened in Brazil, where Santos et al. (2019) concluded that the best option when 

meteorological data is unavailable is the Turc method given the R results (0.90) concerning FAO-

PM56. In contrast, Monteiro et al. (2021) suggest that the ETo estimation should give priority to Turc 

Method regardless of the season and climatic conditions. From these results, it can be concluded that 

in the absence of information to estimate FAO-PM56, the Turc method is the best alternative to 

estimate ETo in southwestern Colombia. 

When the normality test (Jarque-Bera) was applied to the regressor variables, a p-value of 0.00 was 

obtained, which means that the data did not follow a normal distribution. Therefore, the 

nonparametric Spearman correlation coefficient was applied between the climatic variables and FAO-

PM56. The results were, COTA -0.84, RH -0.69, SBH 0.87, TMAX 0.88, TMED 0.84 and TMIN 

0.66, which suggest the highest positive correlation concerning FAO-PM56 are TMAX, SBH and 

TMED, and the highest negative correlation was COTA. However, SBH is a complex variable to 

obtain due to its high costs and technical complexities (Laidi, 2018). TMED results in a lower 

saturation pressure, hence a lower vapour pressure deficit, which results in a lower estimate of ETo 

(Allen et al., 1998). Hence, TMAX and COTA were considered the most crucial regressor variables 

for constructing the ARIMA and MLR models, as shown in Table 5, where the VIF results are also 
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presented to identify any possible multicollinearity. 

The TMIN and RH presented the lowest correlation coefficients (0.66 and -0.69), which indicates 

that they are not the best choice as regressor variables. Multicollinearity was evidenced for TMAX, 

TMED and COTA due to the high values (> 5) in the VIF. These results are congruent, considering 

that both temperatures are correlated and have an inversely proportional relationship with altitude. 

Therefore, the TMAX variable was prioritized for the construction of the models since it was the one 

that reported the highest correlation coefficient (0.88). 

Figure 4 presents the graphical comparison between the best machine learning models, MLR-M2, 

ANN-M1 and ARIMA-M3, during 1983-2017, reported in Table 6. The ARIMA-M3 method was the 

closest in magnitude and shape for the Aeropuerto Antonio Nariño station. The MLR-M2 model was 

the one that reported the highest accuracy in the extreme values for the three stations, evidencing it 

in the maximum and minimum peaks. However, these methods cannot be extrapolated to other 

climatological stations because they were calibrated with specific COTA and TMAX conditions, and 

stations. The ANN-M1 model underestimates ETo at Aeropuerto Antonio Nariño, although it 

reported higher accuracy at El Encano and Obonuco stations. However, it is necessary to perform a 

quantitative evaluation to validate the graphical results. Therefore, Table 6 presents the performance 

metrics results for the nine proposed machine learning models. 

The performance metrics showed that the average of 9 models ranged in RMSE from 4.1 to 8.2 mm 

month-1, MAE from 3.2 to 6.6 mm month-1, MBE from -0.1 to 0.3 mm month-1, NSE from 0.84 to 

0.96 and r from 0.92 to 0.98. Of the 9 models constructed, the ARIMA-M3 model reported the best 

results in terms of error (RMSE=4.1 mm month-1, MAE=3.2 mm month-1, MBE= -0.1 mm month-1, 

NSE=0.96 and R=0.98). This result suggests that using this model would allow estimating ETo more 

accurately in error and correlation. However, these can only be used if there is prior information on 

the response variable (FAO-PM56) due to its autoregressive component, making it difficult to use in 

places with scarce information. Although the ANNs did not report the best metrics, they can be used 

as an alternative for estimating FAO-PM56 in places with scarce information since it is not necessary 

to know the response variable for its estimation. 

These results agree with what has been reported in other research (Zanetti et al., 2008; Alves et al., 

2017; Nema et al., 2017; Laqui et al., 2019; Granata et al., 2020; Meneses et al., 2020), where it is 

shown that the application of ANNs using MLP with few regressor variables allows estimating ETo 

more accurately. Moreover, Feng et al. (2018) and Shiri (2017) suggest that machine learning models 

outperformed empirical equations, which is evident in the results of the performance metrics, as the 
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Turc method goes from having RMSE from 16.9 to 7.3 mm month-1, MAE from 14.2 to 5.9 mm 

month-1, MBE from 10.3 to 0.1 mm month-1, R from 0.81 to 0.87 and NSE from 0.65 to 0.94. It is 

crucial select TMAX, SBH, and COTA to achieve efficient ANN models in regions with scarce 

information. To improve the error and efficiency of the ANN, we recommend adding wind speed, 

given that Maček et al. (2018) suggest that it accounts for a significant contribution to the 

aerodynamic component. However, unfortunately, this is the most complex variable to get data due 

to the lack of stations in the country. 

Even though there are no previous monthly scale studies on this methodology in Colombia, Laqui et 

al. (2019) investigated in a similar context (Peruvian highlands), i.e., climatological stations with 

scarce information located at high altitudes (3819 and 4660 masl). Although the scale was a daily 

scale, the results showed that ANNs allow estimating with reasonable accuracy at high altitude 

stations with scarce information. Pinos et al. (2020) assesses 30 models for the estimation of daily 

ETo in two weather stations with limited data in a wet Andean paramo ecosystem (southern Ecuador). 

Their results suggest that the ANNs outperformed the empirical models and accurately estimated ETo 

in super-humid conditions. It is agreed with different studies developed in humid (Ayaz et al., 2021), 

subhumid (Nema et al., 2017), arid (Tabari and Talaee, 2013), semiarid (Ayaz et al., 2021) and 

wetland areas (Granata et al., 2020) around the world where ANN were used to estimate ETo with 

few input variables. 

In northern Greece, Antonopoulos & Antonopoulos (2017) build 3 ANNs models and concluded that 

any model that uses temperature and radiation as inputs should be able to estimate the ETo 

sufficiently. Mohawesh (2013) proved several ANNs in 3 stations across the Jordan valley and 

concluded that the overall results suggest that temperature based ANNs can be used when there is 

insufficient data. In Serbia, Petković et al. (2015) developed an adaptive neuro-fuzzy inference 

system and concluded that the maximum relative humidity and maximum air temperature are the most 

influential optimal. The same happened in Brazil, where Ferreira (2019) concluded that the relative 

humidity and temperature increased the capacity of the ANNs to estimate ETo adequately. Thereby, 

the results shown in this research represent an option to substitute the FAO-PM56 method in regions 

with scarce information; since the amount of information required by this method could be a limiting 

factor for its application. 

Figure 5 shows the results of the ETo estimation with the ANN-M1 model for the seven stations for 

which FAO-PM56 could not be estimated. It shows that most results present the same shape and 

magnitude except for Barbacoas, which is congruent considering that it is in the Pacific region with 
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marked differences concerning the Andean region, where most other stations are located. 

Interpolation with ordinary cokriging with the spherical semivariogram from the stations of this 

research to know the annual ETo in southwestern Colombia was performed. The results in Figure 6 

show that the highest values are found in the Pacific region. Lower values are observed as one 

approaches the Andean region and reaches the Amazon region. A noteworthy result is that the 

reported values of ETo in the Andean region in comparison with precipitation could indicate a water 

deficit. 

4) CONCLUSIONS 

The results show that this proposed machine learning models allow a precise estimation of ETo in 

southwestern Colombia with scarce information since the performance metrics were better than those 

reported by the best-fitted empirical method (Turc). However, as these were far from the ideal value, 

it was decided to build machine learning techniques to reduce the error associated with ETo 

estimation. Initially, four regressor variables were considered for estimation, and given the high 

correlation with FAO-PM56 (Spearman correlation coefficient) with TMAX (0.88) and COTA (-

0.84) and easiness of obtaining these variables, the machine learning model was built prioritizing 

TMAX and COTA over the others. More input variables give accurate information about ETo 

estimation, as many researchers suggest (Rivas and Caselles, 2004; Nema et al., 2017; Choi and Jeon, 

2018); yet one of the purposes of this research is to develop an alternative model with few inputs 

variables to ease application to adequately estimate ETo in the absence of data as in southwestern 

Colombia. 

Hence, ETo was calculated with nine machine learning models, and it was determined that the 

ARIMA-M3 and MLR-M2 models presented the best performance, because it was calibrated with 

specific conditions like COTA, TMAX (exogenous variables), and stations. However, there are 

restrictions on their use since they cannot be extrapolated outside the study area. Therefore, the ANN-

M1 model was used as an alternative method to estimate ETo in southwestern Colombia with scarce 

information, considering previous successful studies, their unrestricted application, and good 

performance metrics, and that does not require knowing the response variable for its estimation since 

it works as a black-box model. 

Metrics performance of the ANN-M1 model concerning those calculated by the Turc method is better, 

as it goes from having an RMSE of 16.9 to 7.3 mm month-1, an MAE of 14.2 to 5.9 mm month-1, an 

MBE of 10.3 to 0.1 mm month-1, an R of 0.81 to 0.87 and an NSE of 0.65 to 0.94. These results 

suggest that using the ANN-M1 model allows a more accurate estimation of ETo in places with little 
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information at high altitudes, which allows considering it as a methodology to be used in forecasts or 

to improve the understanding of future hydroclimatic events to reduce the uncertainty generated. 

The ANNs tend to underestimate the ETo results slightly; this may be because the developed network 

did not adequately assimilate the spatial variation with the current information. Considering that the 

results obtained are reasonable, it is suggested to improve the data source by installing new 

climatological stations to better train the ANNs. It is also necessary to better understand the spatial-

temporal variation of the climatic variables and, thus, to have better planning and management in 

managing the water resources of the southwestern part of Colombia. 

The results presented here contributed to validating the idea of the application of machine learning 

techniques to estimate ETo in places with scarce information. This fact provides, easy and accurate 

information to agriculturists and stakeholders to develop programs that provide and enhance water 

resources management to achieve the proposed sustainable development goals and ensure food 

security and sovereignty. Future studies could emphasize developing machine learning models 

(ANN) to estimate and forecast the ETo in different climate conditions, e.g., arid and humid, on a 

monthly scale. 
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Figure 1. The geographical location of the study area and distribution of climatological stations, principal sinoptic station includes wind 

velocity data 
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Figure 2. Methodological diagram of the research 
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Figure 3. Graphical comparison of evapotranspiration by different methods: a) Aeropuerto Antonio Nariño 1983-2017, b) Obonuco 

1983-2017, and c) El Encano 1983-2017 
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Figure 4. Graphical comparison of machine learning models: a) Aeropuerto Antonio Nariño, b) Obonuco and c) El Encano 

  



Artículo en edición                                                                                                             

 

31 

 

 
Figure 5 Estimation of ETo by ANN-M1 at stations with scarce information 
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Figure 6 Spatialization of ETo in southwestern Colombia 
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Table 1. Reference evapotranspiration models were used in this research. The input variables for this model 

are: Ra = extraterrestrial solar radiation (MJ m-2), Tmax = maximum temperature (°C) at 2 meters, Tmin = 

minimum temperature (°C) at 2 meters, Tmean = mean temperature (°C) at 2 meters, Ra = incident solar 

radiation on the atmosphere (MJ m-2 d-1), Rn = net radiation (MJ m-2 d-1) , Rs = net radiation (MJ m-2), h= 

masl, RH = relative humidity (%), Δ the slope of the vapor pressure curve [kPa °C-1], G = ground heat flux 

density [MJ m-2 day-1], γ = psychrometric constant [kPa °C-1] and U2 the wind speed at 2 m height [m s-1] 

Name ETo estimation methods Reference Model Type 

FAO-PM56 
ETo= 

0.408 𝛥(𝑅𝑛 – 𝐺)+ (𝛾  
900

𝑇𝑚𝑒𝑎𝑛+273
)𝑈2 (𝑒𝑠 – 𝑒𝑎)

𝛥+𝛾(1+0.34𝑈2)
  

(Allen et al., 
1998) 

Combined 

 

Hargreaves 

 

ETo = 0.0023 (𝑇𝑚𝑒𝑎𝑛 +17.8) (𝑇𝑚𝑎𝑥 –  𝑇𝑚𝑖𝑛)0.5 𝑅𝑎   

 

(Hargreaves and 
Samani, 1985) 

 

Temperature 

 
Turc 

 ETo = 0.013 (
𝑇𝑚𝑒𝑎𝑛

𝑇𝑚𝑒𝑎𝑛+15
)(23.8846𝑥𝑅𝑠 + 50)(1+

50−𝐻𝑅

70
) if RH< 50  

 

ETo = 0.013 (
𝑇𝑚𝑒𝑎𝑛

𝑇𝑚𝑒𝑎𝑛+15
)(23.8846𝑅𝑠 + 50) if RH > 50  

 
(Turc, 1961) 

 

 
 

 

Radiation 
 

 
Thornthwaite 

 

ETo = 16 x (
10∗𝑇𝑚𝑒𝑎𝑛

𝐼
)𝛼  

α = 6.75 ×10-7 × I3 – 7.71 × 10-5× I2 + 1.79 × 10-2 × I + 0.49  

𝐼 = ∑ (
𝑇𝑚𝑒𝑎𝑛

5

1.514
) 12

𝑖=1   

 

 

(Thornthwaite and 
Wilm, 1948) 

 

 
Temperature 

Cenicafé ETo =4.37−0,0002∗ℎ   (Jaramillo , 2006) Temperature 
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Table 2. Validation performance metrics used: N = Number of data, ETo = observed value FAO-PM56, ETo' 

= predicted ETo, 𝐸𝑇0
̅̅ ̅̅ ̅= average estimated ETo FAO-PM56, 𝐸𝑇0

̅̅ ̅̅ ̅′
 = average predicted ETo 

Name Equation Purpose of metrics Perfect score 

RMSE (Root mean squared error) 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑ (𝐸𝑇𝑜 − 𝐸𝑇𝑜′)2𝑁

𝑖=1   
Goodness-of-fit for high values 0 

MAE (Mean Absolute Error) 𝑀𝐴𝐸 =
1

𝑁 
  ∑ |𝐸𝑇𝑜 − 𝐸𝑇𝑜′|𝑁

𝑖=1   

 

Goodness-of-fit for mean values 0 

MBE (Mean Bias Error) 𝑀𝐵𝐸 =
1

𝑁 
  ∑ (𝐸𝑇𝑜 − 𝐸𝑇𝑜′)𝑁

𝑖=1   Determine the average model bias 0 

NSE (Nash–Sutcliffe efficacy 

coefficient) 
𝑆𝐸 =  1 −  

∑ (𝐸𝑇𝑜−𝐸𝑇0̅̅ ̅̅ ̅)2𝑁
𝑖=1

∑ (𝐸𝑇𝑜′−𝐸𝑇0̅̅ ̅̅ ̅)2𝑁
𝑖=1

  
Evaluate the predictive capability of 

hydrological models. 

1 

R (Pearson correlation 

coefficient) 𝑟 =  
∑ (𝐸𝑇𝑜−𝐸𝑇0̅̅ ̅̅ ̅)(𝐸𝑇𝑜′−𝐸𝑇0̅̅ ̅̅ ̅′

)𝑁
𝑖=1

√∑ (𝐸𝑇𝑜−𝐸𝑇0̅̅ ̅̅ ̅)2∗∑ (𝐸𝑇𝑜′−𝐸𝑇0̅̅ ̅̅ ̅′
)

2
𝑁
𝑖=1

𝑁
𝑖=1   

  
Statistical correlation between two 

variables 

1 
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Table 3. Characteristics of weather stations in the study area: Tmax, Tmed, Tmin, RH, and SBH 
Name Height Multiyear monthly averages of climatological variables Annual precipitation 

Station masl Tmax (°C) Tmed (°C) Tmin (°C) RH (%) SBH (h) mm year-1 

Aeropuerto Antonio Nariño 1796 27.3 19.2 12.9 76.5 5.4 1216 

Barbacoas 32 32.5 26.2 20 89.5 2.9 6927 

Bombona 1493 28.9 20.1 13.9 77.9 4.7 1071 
Monopamba 1776 23.6 17.0 11.6 88.8 2.1 3214 

Obonuco 2710 20.0 13.0 6.9 79.9 3.3 888 
Sindagua 2800 20.4 13.1 7.5 80.2 3.9 988 

Botana 2820 19.8 12.6 5.9 78.6 3.2 964 

El Encano 2830 18.8 11.7 4.8 86.4 2.5 1402 
Taminango 1875 26.2 18.0 13.2 83.9 - 1715 
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Table 4. Performance metrics for ETo estimation methods concerning FAO-PM56 
Performance metrics Cenicafé Hargreaves Thornthwaite Turc 

RMSE (mm month-1) 30.4 20.0 50.4 16.9 
MAE (mm month-1) 26.4 18.0 48.7 14.2 
MBE (mm month-1) 26.4 -17.9 48.7 10.3 
R 0.80 0.90 0.86 0.81 
NSE 0.64 0.81 0.74 0.65 
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Table 5. VIF for climatic variables 

Model Inputs variables VIF 

  TMAX TMIN TMED RH SBH COTA 

1 TMAX + TMED 12.59 - 12.59 - - - 
2 TMAX + SBH 3.07 - - - 3.07 - 

3 TMAX + SBH + COTA 8.67 - - - 3.18 7.93 

4 TMAX + SBH + COTA + TMED 12.70 - 32.01 - 3.52 17.89 
5 TMAX + SBH + COTA + TMED + RH 12.71 - 41.1 2.63 4.32 25.58 

6 TMAX + SBH + COTA + TMED + RH + TMIN 13.29 10.59 51.7 2.64 4.64 26.76 
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Table 6. Performance metrics of machine learning models compared to FAO-PM56; the models selected in 

bold are the best 
Combination Input parameters RMSE (mm 

month-1 ) 
MAE (mm 
month-1) 

MBE (mm 
month-1) 

NSE R Observations 

MLR-M1 TMAX, SBH, and 

COTA 

7.7 6.1 0.3 0.86 0.93 All models comply with the error assumptions, and 

COTA was added as a categorical variable; for MLR-M1, 
a natural root transformation was applied, and for MLR-

M2 and MLR-M3, a square root transformation was 
applied. 

MLR-M2 TMAX, SBH, and 

COTA 

5.5 4.4 0.1 0.93 0.93 

MLR-M3 TMAX, HUMREL, 
and COTA 

6.5 5.2 0.1 0.90 0.95 

ANN-M1 TMAX and COTA 7.3 5.9 0.1 0.87 0.94 In the development of these models, multiple 

architectures were built. The tanh activation function, the 
lbgfs optimizer, and a hidden layer with three neurons, a 

learning rate of 0.01 and 1000 iterations were performed 

for each model. The weights of the COTA with the first, 

second and third neuron was: 0.010, 0.19 and 0.46 

respectively. The weights of the TMAX with the first, 
second and third neuron was: -0.15, 0.29 and -6.16 

respectively. The weights of the hidden layer to the output 
neuron were: -6.52, 7.62 and -0.30. 

 

ANN-M2 TMAX and TMED 8.2 6.6 0.1 0.84 0.92 
ANN-M3 TMAX, TMED, and 

TMIN 

7.6 6.1 0.1 0.87 0.93 

ARIMA-M1 TMAX and COTA 5.2 4.0 -0.1 0.94 0.97 The different combinations between the autoregressive 
and moving average components with their respective 

lags were tested. It was obtained that the best combination 
involved an autoregressive coefficient in the regular and 

seasonal phases with a seasonality of 12 months. 

ARIMA(1,0,0)(1,0,0)12 

ARIMA-M2 TMAX, TMED, and 

COTA 

5.0 3.9 0.1 0.94 0.97 

ARIMA-M3 PCA1*COTA + 

PCA2*COTA 

4.1 3.2 -0.1 0.96 0.98 

 
 


